Технология сухих газодинамических уплотнений (СГДУ) для герметизации роторов газовых компрессоров используется с 70х гг. ХХ в. Эксплуатационные преимущества СГДУ предопределили их широкое применение в центробежных компрессорах (ЦБК) газоперекачивающих агрегатов ПАО «Газпром». Сегодня парк ЦБК с СГДУ составляет более 700 ед. В связи с этим актуальны вопросы обеспечения надежной работы уплотнений.
Наиболее распространены СГДУ двухступенчатой конструкции (рисунок), состоящие из двух последовательно расположенных уплотнительных пар (основной и страховочной). Каждая пара состоит из твердосплавного вращающегося седла (роторная часть) и подвижного в осевом направлении торца, изготовленного из материала на основе графита (статорная часть). Специальные канавки на поверхности седла при вращении захватывают газ и создают области повышенного давления в стыке «седло – торец». Этим давлением торец отжимается от седла на величину рабочего зазора примерно 3 мкм.
В результате достигается бесконтактная работа уплотнительных пар с очень небольшим зазором, что позволяет, с одной стороны, исключить интенсивный износ уплотнительных пар, а с другой –
минимизировать величину протечек газа через уплотнение.
В связи с небольшими зазорами в уплотнительных парах они должны работать на очищенном от мехпримесей газе, так как любые частицы размером более 3 мкм вызовут повреждение поверхностей седла и торца с последующим отказом СГДУ. Поэтому в полость перед первой ступенью подается специально подготовленный буферный газ (БГ), имеющий необходимую степень чистоты. Для предотвращения попадания недостаточно чистого перекачиваемого газа в уплотнение БГ должен иметь давление, на 10...20 кПа превышающее давление газа в уплотняемой полости.
Протечки газа после обеих ступеней СГДУ отводятся на свечу. Для обеспечения взрывозащиты подшипника ЦБК в полость после второй ступени подается барьерный воздух (БВ), который за счет повышенного давления исключает попадание газа в подшипник. Так как БВ контактирует с деталями уплотнительной пары второй ступени, он также должен иметь необходимую степень очистки.
Помимо требований к чистоте от мехпримесей важно исключить риск выпадения конденсата из БГ и БВ, так как сконденсировавшиеся углеводороды или влага вызывают нарушение работы уплотнительных пар (залипание торца, забивание канавок седла, вспучивание поверхности торца и пр.) и коррозию в расточке корпуса ЦБК. Риск выпадения конденсата из БГ и БВ определяется, с одной стороны, степенью их осушки, с другой – минимальной температурой БГ и БВ при работе.
Степень осушки сред зависит от применяемой технологии. Если при подготовке БГ и БВ не применяется дополнительная осушка, то содержание тяжелых углеводородов и влаги в БГ соответствует характеристикам перекачиваемого газа, а содержание влаги в БВ соответствует влажности атмосферного воздуха. Следует отметить, что осушка БГ и БВ может достигаться только путем использования специального оборудования. Это может быть либо охладительная установка с сепарацией конденсата, либо адсорбционная установка с регенерацией адсорбента. Обе технологии достаточно сложны и затратны, в связи с чем осушка БГ и БВ широко не применяется.
Минимальная температура БГ имеет место в камере между уплотнительными парами первой и второй ступеней СГДУ. Это обусловлено тем, что температура газа интенсивно снижается при его дросселировании в рабочем зазоре первой ступени вследствие эффекта Джоуля – Томсона. Уровень температуры в этой полости зависит от начальной температуры БГ, подаваемого в СГДУ, и перепада давлений, срабатываемого на первой ступени. Минимальная температура БВ реализуется при его контакте с охлажденными деталями СГДУ, уровень температур зависит от начальной температуры БВ и температуры омываемых деталей СГДУ. Также необходимо учитывать теплообмен БГ и БВ с торцевыми крышками ЦБК, по каналам в которых среды подводятся к СГДУ (рисунок).
Таким образом, при выборе температуры БГ, подаваемой к ЦБК, необходимо учитывать:
· уровень входного давления перекачиваемого газа (так как от него зависят перепад БГ, срабатываемый на первой ступени СГДУ, и соответствующее падение температуры БГ);
· уровень входной температуры перекачиваемого газа (от нее зависят температуры торцевых крышек ЦБК и, соответственно, снижение температуры БГ в их каналах);
· температуру точки росы перекачиваемого газа по тяжелым углеводородам (ТТРув) и воде (ТТРв)
при давлении БГ в камере перед первой ступенью СГДУ (так как здесь газ контактирует с деталями, охлажденными сдросселированным в первой ступени газом).
Аналогично при выборе температуры БВ должны быть учтены:
· уровень входного давления перекачиваемого газа (так как от него зависит температура деталей второй ступени СГДУ, охлажденных сдросселированным в первой ступени газом);
· уровень входной температуры перекачиваемого газа (от нее зависит снижение температуры БВ в каналах торцевых крышек ЦБК);
· диапазон изменения влажности и температуры атмосферного воздуха (климатическая характеристика объекта).
Недостаточно полный учет перечисленных условий эксплуатации при выборе температур БГ и БВ обусловливает конденсатообразование в узлах СГДУ и их отказы. Подтверждением тому является освещенный ниже опыт эксплуатации ЦБК с СГДУ на компрессорных станциях (КС) магистрального газопровода (МГ) «Бованенково – Ухта».
Условия эксплуатации ЦБК на заполярном участке данного МГ характеризуются следующим:
• давление перекачиваемого газа на входе ЦБК: 8,0...9,0 МПа (изб);
• температура перекачиваемого газа на входе ЦБК: –15...5 °С;
• ТТРув перекачиваемого газа: –4...–9 °С (при 8,0...9,0 МПа);
• ТТРв перекачиваемого газа:–6...–13 °С (при 8,0...9,0 МПа);
• относительная влажность атмосферного воздуха: от 80 % до состояния насыщения при текущей температуре;
• температура атмосферного воздуха: –40...20 °С.
При данных условиях температура БГ при дросселировании в первой ступени СГДУ до давления около 20 кПа (изб) снижается на 40...50 °С. Поэтому для исключения конденсатообразования необходимо иметь температуру БГ, подаваемого к СГДУ, не менее 45...50 °С, чтобы избежать появления отрицательных температур в уплотнении. С учетом охлаждения в крышках ЦБК это требует подавать БГ к фланцу ЦБК с температурой на уровне 50...55 °С.
Что касается БВ, то для исключения конденсатообразования необходимо поддерживать такие условия, чтобы температура воздуха в уплотнении не понижалась ниже его текущей ТТРв. Для этого проще всего обеспечить превышение температуры БВ над температурой уличного воздуха с необходимым запасом. Этот запас (с учетом охлаждения в каналах крышек ЦБК) целесообразно предусматривать на уровне не менее 30 °С.
Данные требования к температурам рабочих сред СГДУ не были учтены при разработке систем подготовки БГ и БВ в составе оборудования ГПА, эксплуатирующихся на ряде КС МГ «Бованенково – Ухта». Температуры БГ, подаваемого к фланцам ЦБК, составляли 15...30 °С, температуры БВ – около 20 °С при температуре уличного воздуха 10 °С (в осенний период).
В результате произошло множество отказов СГДУ по причине разгерметизации первой и второй ступеней. На четырех КС, оснащенных одинаковыми ГПА, в течение года произошло 17 отказов. Отказы преимущественно происходили в периоды, когда температура газа на входе ЦБК опускалась ниже –5 °С. Бόльшая часть отказов, связанных с разгерметизацией второй ступени, произошла в наиболее влажный летнеосенний период года.
При ревизиях отказавших СГДУ обнаружены углеводородные отложения и влага на деталях, повреждения уплотнительных пар, залипание подвижных торцов. Таким образом, все отказы произошли по причине выпадения конденсата из БГ и БВ непосредственно в узлах СГДУ.
В результате обследований систем подготовки БГ и БВ были выявлены следующие недостатки их работы:
· недостаточная температура БГ, подаваемого к ЦБК;
· завышенный расход БГ относительно расчетных величин;
· недостаточная пропускная способность фильтров БГ;
· недостаточный подогрев БВ при работе системы подготовки воздуха в «летнем» режиме.
Недостаточная температура БГ в значительной мере обусловлена теплопотерями во внешнюю среду. Часть тепла теряется при прохождении газа через протяженный цеховой коллектор, а основные теплопотери происходят в укрытии ГПА изза теплоотдачи от оборудования системы БГ, не имеющего теплоизоляции.
С другой стороны, недостаточная температура БГ обусловливается низкой эффективностью подогрева в электроподогревателе, штатная конфигурация которого не позволяла поднять температуру БГ на выходе выше 35...44 °С. Дополнительное снижение эффективности подогрева возникает изза завышенных расходов БГ.
С учетом снижения температуры БГ при его последующем дросселировании в регулирующем клапане «газгаз» (на 9...10 °С) вышеперечисленные факторы не позволяли подать БГ с температурой выше 15...30 °С.
Недостаточный подогрев БВ возникает при работе системы его подготовки в «летнем» режиме, с охлаждением воздуха в специальном теплообменнике. Необходимость охлаждения БВ обусловлена тем, что этот же воздух используется для охлаждения электромагнитных подшипников (ЭМП) ротора ЦБК. Поэтому в летнеосенний период превышение температуры БВ над температурой уличного воздуха составляет около 10 °С.
Недостаточная пропускная способность штатных фильтров БГ, имеющих тонкость очистки 1 мкм, вызывала повышенный перепад давления на фильтрах, что приводило к необходимости работать на обоих фильтрах одновременно
(т. е. без резерва).
В результате совместной работы с разработчиком ГПА был определен комплекс доработок, позволивших устранить указанные недостатки исходной конфигурации систем БГ и БВ.
Для повышения температуры БГ выполнено следующее:
· смонтирована линия агрегатного отбора БГ из выходного патрубка ЦБК (т. е. отбор из точки с максимальной температурой газа);
· терморегуляторы электроподогревателей заменены на имеющие расширенный диапазон настройки по температуре (т. е. увеличена степень подогрева);
· расход БГ снижен за счет установки дроссельных шайб;
· предусмотрена теплоизоляция оборудования системы БГ.
Для повышения температуры БВ изменена схема подачи воздуха в узлы СГДУ. В результате доработки БВ подается к уплотнениям не через штатные каналы в крышках ЦБК, а через специально просверленные отверстия в обойме страховочного подшипника (рисунок). Тем самым исключается охлаждение БВ в каналах крышек, и воздух перед подачей к СГДУ дополнительно подогревается в результате теплосъема с катушек ЭМП.
Пропускная способность фильтров повышена путем замены фильтроэлементов на имеющие степень очистки 3 мкм, за счет этого обеспечена нормальная работа на одном фильтре (с резервом).
В результате доработок температура БГ, подаваемого к ЦБК, повышена до 44...52 °С. Температура БВ, подаваемого в узлы СГДУ, при типичной летнеосенней температуре уличного воздуха 10...15 °С
составляет не менее 35...40 °С.
За истекший трехмесячный период эксплуатации ГПА с доработанными системами БГ и БВ отказов с разгерметизацией СГДУ не зафиксировано, что свидетельствует об эффективности доработок. Окончательные выводы будут сделаны по результатам эксплуатации доработанных ГПА в 2017 г.
Вышеописанный опыт эксплуатации наглядно подтверждает необходимость всестороннего учета и анализа условий эксплуатации оборудования. Технические решения, казалось бы, уже испытанные на ранее реализованных объектах, при применении в новых условиях должны пересматриваться и при необходимости модифицироваться.