ГЕОЛОГИЯ И РАЗРАБОТКА МЕСТОРОЖДЕНИЯ (GEOLOGY AND GAS FIELDS DEVELOPMENT)

СВЕРХТЯЖЕЛЫЕ ЖИДКОСТИ ДЛЯ ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА

(SUPERHEAVY FLUIDS FOR HYDRAULIC FRACTURING)

Для интенсификации добычи пластовых углеводородных флюидов широко применяется гидравлический разрыв пласта. Этот метод предполагает использование жидкости для транспортировки и размещения пропанта в трещине. К ней имеется ряд требований, в том числе по вязкости. В ходе развития технологии гидроразрыва пласта объемы закачиваемых жидкостей и нагрузки на насосные агрегаты значительно возросли. Устаревание насосов обусловливает необходимость снижения нагрузки на них. Это возможно за счет использования жидкостей с высокой плотностью, однако решить данную задачу непросто. Большинство жидкостей представляет собой продукты реакции сшивки полисахарида с поливалентным металлом, но высокая минерализация, особенно присутствие солей жесткости и железа, оказывает негативное влияние на этот процесс. В статье показаны результаты исследования, в ходе которого  подбирались рецептуры жидкости для гидроразрыва пласта с плотностью 1,35–1,37 г / см3. Был проведен ряд испытаний изготовленных систем по основным реологическим показателям. В итоге удалось создать две рецептуры, которые могут применяться для гидроразрыва пласта.

Hydraulic fracturing is widely used to intensify the production of hydrocarbon formation fluids. The method involves using a fluid to transport and place a proppant in the crack. The fluid has to meet several requirements, including those for viscosity. The injected fluid volumes and pump unit loading have considerably grown with hydraulic fracturing technology development. As the pumps become obsolete, the load has to be reduced. Using high-density fluids can help achieve this, but it is not easy. Most fluids are products of polysaccharide cross-linking with a polyvalent metal, but the high salinity, especially the presence of hardness salts and iron, adversely affects the process. The article presents the results of research for hydraulic fracturing fluid formulations in the density range of 1.35–1.37 g/cm3. The fabricated systems underwent a series of tests for the main flow characteristics. As a result, we created two formulations that can be used for hydraulic fracturing.

ГИДРАВЛИЧЕСКИЙ РАЗРЫВ ПЛАСТА, ДЕСТРУКТОР, ВЫСОКОМИНЕРАЛИЗОВАННАЯ ЖИДКОСТЬ, РЕЦЕПТУРА ЖИДКОСТИ, СШИВКА ПОЛИСАХАРИДА

HYDRAULIC FRACTURING, DESTRUCTOR, HIGHLY SALINE FLUID, FLUID FORMULATION, POLYSACCHARIDE CROSS-LINKING

М.В. Чертенков, к.т.н., ФГБОУ ВО «Уфимский государственный нефтяной технический университет» (Уфа, Россия), ООО «ЛУКОЙЛ-Инжиниринг» (Москва, Россия), mdavil67@gmail.com

Ю.А. Котенев, д.т.н., проф., ФГБОУ ВО «Уфимский государственный нефтяной технический университет», geokot@inbox.ru

M.V. Chertenkov, PhD in Engineering, Ufa State Petroleum Technological University (Ufa, Russia), LLC “LUKOIL-Engineering” (Moscow, Russia), mdavil67@gmail.com

Yu.A. Kotenev, DSc in Engineering, Professor, Ufa State Petroleum Technological University, geokot@inbox.ru

Магадова М.А., Малкин Д.Н., Силин М.А., Малютин С.А. Современные технологические жидкости для гидроразрыва пласта и химические реагенты для их получения // Особенности современного этапа развития естественных и технических наук: сб. науч. тр. по материалам Междунар. науч.-практ. конф.: в 2 ч. / под общ. ред. Е.П. Ткачевой. Белгород: Агентство перспективных научных исследований, 2019. Ч. 1. С. 169–175.

Магадова Л.А., Силин М.А., Глущенко В.Н. Нефтепромысловая химия. Технологические аспекты и материалы для гидроразрыва пласта. М.: РГУ нефти и газа имени И.М. Губкина, 2012. 423 с.

Калинин В.Р., Козлов Е.Н., Кустышев А.В. Сравнительное исследование полимерных составов бобов гуара и карбоксиметилцеллюлозы в качестве гелеобразующих систем для гидравлического разрыва пласта // Нефтепромысловое дело. 2016. № 3. С. 22–30.

Fink J.K. Hydraulic fracturing chemicals and fluids technology. Waltham, MA, USA: Gulf Professional Publishing, 2013. 235 p. Speight J.G. Fracturing fluids // Handbook of hydraulic fracturing / J.G. Speight. Hoboken, NJ, USA: John Wiley and Sons, 2016. P. 165–194.

Aliu A.O., Guo J., Wang S., Zhao X. Hydraulic fracture fluid for gas reservoirs in petroleum engineering applications using sodium carboxy methyl cellulose as gelling agent // J. Nat. Gas Sci. Eng. 2016. Vol. 32. P. 491–500. DOI: 10.1016/j.jngse.2016.03.064.

Li Y., Wang S., Guo J., et al. Reduced adsorption of polyacrylamide-based fracturing fluid on shale rock using urea // Energy Sci. Eng. 2018. Vol. 6, No. 6. P. 749–759. DOI: 10.1002/ese3.249.

Al-Muntasheri G.A. A critical review of hydraulic-fracturing fluids for moderate- to ultralow-permeability formations over the last decade // SPE Prod. Oper. 2014. Vol. 29, No. 4. P. 243–260. DOI: 10.2118/169552-PA.

Laik S., Kumar A. Crosslinking of indigeneous and imported guar gum for hydraulic fracturing. A comparative study // Res. Ind. 1990. Vol. 35, No. 1. P. 40–45.

Cleary M.P. Modelling and development of hydraulic fracturing technology // Rock fracture mechanics / H.P. Rossmanith (ed.). Vienna: Springer, 1983. P. 383–475. DOI: 10.1007/978-3-7091-2750-6_14.

Barati R., Liang J.-T. A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells // J. Appl. Polym. Sci. 2014. Vol. 131, No. 16. DOI: 10.1002/app.40735.

Xiong B., Miller Z., Roman-White S., et al. Chemical degradation of polyacrylamide during hydraulic fracturing // Environ. Sci. Technol. 2018. Vol. 52, No. 1. P. 327–336. DOI: 10.1021/acs.est.7b00792.

Daeffler C., Perroni D., Makarychev-Mikhailov S., Mirakyan A. Internal viscoelastic surfactant breakers from in-situ oligomerization // Proceedings of the SPE International Conference on Oilfield Chemistry. Galveston, TX, USA: SPE, 2019. Article ID SPE-193563-MS. DOI: 10.2118/193563-MS.

Meng Y., Zhao F., Jin X., et al. Performance evaluation of enzyme breaker for fracturing applications under simulated reservoir conditions // Molecules. 2021. Vol. 26, No. 11. Article ID 3133. DOI: 10.3390/molecules26113133.

Магадова Л.А., Малкин Д.Н., Бородин С.А., Крисанова П.К. Исследование энзимов в качестве деструкторов полисахаридных жидкостей ГРП // Нефть. Газ. Новации. 2017. № 8. С. 21–25.

Sagyndikov M., Seright R., Kudaibergenov S., Ogay E. Field demonstration of the impact of fractures on hydrolyzed polyacrylamide injectivity, propagation, and degradation // SPE J. 2022. Vol. 27, No. 2. P. 999–1016. DOI: 10.2118/208611-PA.

Sumner A.J., Plata D.L. Oxidative breakers can stimulate halogenation and competitive oxidation in guar-gelled hydraulic fracturing fluids // Environ. Sci. Technol. 2019. Vol. 53, No. 14. P. 8216–8226. DOI: 10.1021/acs.est.9b01896.

Terracina J.M., McCabe M.A., Shuchart C.E., Walker M.L. Novel oxidizing breaker for high-temperature fracturing // SPE Prod. Oper. 1999. Vol. 14, No. 2. P. 144–149. DOI: 10.2118/56278-PA.

Meng F., Li M., Wang S., et al. Encapsulation of potassium persulfate with ABS via coacervation for delaying the viscosity loss of fracturing fluid // J. Appl. Polym. Sci. 2019. Vol. 136, No. 27. Article ID 47734. DOI: 10.1002/app.47734.

Al-Muntasheri G.A., Li L., Liang F., Gomaa A.M. Concepts in cleanup of fracturing fluids used in conventional reservoirs: A literature review // SPE Prod. Oper. 2017. Vol. 33, No. 2. P. 196–213. DOI: 10.2118/186112-PA.

Wu B., Zhang X., Jeffrey R.G. Analysis of thermal effects on hydraulic fracturing near a horizontal well by using displacement discontinuity method // Proceedings of the SPE Asia Pacific Hydraulic Fracturing Conference. Beijing: SPE, 2016. Article ID SPE-181865-MS. DOI: 10.2118/181865-MS.

Fripp M., Walton Z. Wellbore cool down simplifies using dissolvable materials // Proceedings of the Offshore Technology Conference. Houston, TX, USA: OTC, 2018. Article ID OTC-28875-MS. DOI: 10.4043/28875-MS.

Magadova MA, Malkin DN, Silin MA, Malyutin SA. Modern process fluids for hydraulic fracturing and chemical agents for producing them. In: Tkacheva YeP (ed.) Collection of papers based on the proceedings of the International Scientific and Practical Conference “Specific Features of the Current Development Stage of Natural and Engineering Sciences”, 28 December 2017, Belgorod, Russia. Vol. 1. Belgorod, Russia: Prospective Scientific Research Agency [Agentstvo perspektivnyh nauchnyh issledovanij]; 2019. p. 169–175. (In Russian)

Magadova LA, Silin MA, Glushchenko VN. Oilfield Chemistry. Process Aspects and Hydraulic Fracturing Materials. Moscow: Gubkin University; 2012. (In Russian)

Kalinin VR, Kozlov EN, Kustyshev AV. Comparative study of guar beans polymeric compositions and carboxymethyl cellulose as gelling systems for conducting hydraulic fracturing of a formation. Oilfield Engineering [Neftepromyslovoe delo]. 2016; (3): 22–30. (In Russian)

Fink JK. Hydraulic Fracturing Chemicals and Fluids Technology. Waltham, MA, USA: Gulf Professional Publishing; 2013.

Speight JG. Fracturing fluids. In: Speight JG Handbook of Hydraulic Fracturing. Hoboken, NJ, USA: John Wiley and Sons; 2016. p. 165–194.

Aliu AO, Guo J, Wang S, Zhao X. Hydraulic fracture fluid for gas reservoirs in petroleum engineering applications using sodium carboxy methyl cellulose as gelling agent. J. Nat. Gas Sci. Eng. 2016; 32: 491–500. https://doi.org/10.1016/j.jngse.2016.03.064.

Li Y, Wang S, Guo J, Gou X, Jiang Z, Pan B. Reduced adsorption of polyacrylamide-based fracturing fluid on shale rock using urea. Energy Sci. Eng. 2018; 6(6): 749–759. https://doi.org/10.1002/ese3.249.

Al-Muntasheri GA. A critical review of hydraulic-fracturing fluids for moderate- to ultralow-permeability formations over the last decade. SPE Prod. Oper. 2014; 29(4): 243–260. https://doi.org/10.2118/169552-PA.

Laik S, Kumar A. Crosslinking of indigeneous and imported guar gum for hydraulic fracturing. A comparative study. Res. Ind. 1990; 35(1): 40–45. Cleary MP. Modelling and development of hydraulic fracturing technology. In: Rossmanith HP (ed.) Rock Fracture Mechanics. Vienna: Springer; 1983. p. 383–475. https://doi.org/10.1007/978-3-7091-2750-6_14.

Barati R, Liang J-T. A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells. J. Appl. Polym. Sci. 2014; 131(16). https://doi.org/10.1002/app.40735.

Xiong B, Miller Z, Roman-White S, Tasker T, Farina B, Piechowicz B, et al. Chemical degradation of polyacrylamide during hydraulic fracturing. Environ. Sci. Technol. 2018; 52(1): 327–336. https://doi.org/10.1021/acs.est.7b00792.

Daeffler C, Perroni D, Makarychev-Mikhailov S, Mirakyan A. Internal viscoelastic surfactant breakers from in-situ oligomerization. In: SPE Proceedings of the SPE International Conference on Oilfield Chemistry, 8–9 April 2019, Galveston, TX, USA. Galveston, TX, USA: SPE; 2019. article ID SPE-193563-MS. https://doi.org/10.2118/193563-MS.

Meng Y, Zhao F, Jin X, Feng Y, Sun G, Lin J, et al. Performance evaluation of enzyme breaker for fracturing applications under simulated reservoir conditions. Molecules. 2021; 26(11): article ID 3133. https://doi.org/10.3390/molecules26113133.

Magadova LA, Malkin DN, Borodin SA, Krisanova PK. Research of enzymes as a breaker for the polysaccharide liquids of hydraulic fracturing. Oil. Gas. Novations [Neft’. Gas. Novacii]. 2017; (8): 21–25. (In Russian)

Sagyndikov M, Seright R, Kudaibergenov S, Ogay E. Field demonstration of the impact of fractures on hydrolyzed polyacrylamide injectivity, propagation, and degradation. SPE J. 2022; 27(2): 999–1016. https://doi.org/10.2118/208611-PA.

Sumner AJ, Plata DL. Oxidative breakers can stimulate halogenation and competitive oxidation in guar-gelled hydraulic fracturing fluids. Environ. Sci. Technol. 2019; 53(14): 8216–8226. https://doi.org/10.1021/acs.est.9b01896.

Terracina JM, McCabe MA, Shuchart CE, Walker ML. Novel oxidizing breaker for high-temperature fracturing. SPE Prod. Oper. 1999; 14(2): 144–149. https://doi.org/10.2118/56278-PA.

Meng F, Li M, Wang S, Liu X, Gao W, Ma Z, et al. Encapsulation of potassium persulfate with ABS via coacervation for delaying the viscosity loss of fracturing fluid. J. Appl. Polym. Sci. 2019; 136(27): article ID 47734. https://doi.org/10.1002/app.47734.

Al-Muntasheri GA, Li L, Liang F, Gomaa AM. Concepts in cleanup of fracturing fluids used in conventional reservoirs: A literature review. SPE Prod. Oper. 2017; 33(2): 196–213. https://doi.org/10.2118/186112-PA.

Wu B, Zhang X, Jeffrey RG. Analysis of thermal effects on hydraulic fracturing near a horizontal well by using displacement discontinuity method. In: SPE Proceedings of the SPE Asia Pacific Hydraulic Fracturing Conference, 24–26 August 2016, Beijing, China. Beijing: SPE; 2016. article ID SPE-181865-MS. https://doi.org/10.2118/181865-MS.

Fripp M, Walton Z. Wellbore cool down simplifies using dissolvable materials. In: OTC Proceedings of the Offshore Technology Conference, 30 April –
3 May 2018, Houston, TX, USA. Houston, TX, USA: OTC; 2018. article ID OTC-28875-MS. https://doi.org/10.4043/28875-MS.

NEFTEGAS.info

Внимание к деталям — от идеи
до воплощения! Только актуальная информация и свежие новости.

Контакты

108811, г. Москва, Киевское ш.,
Бизнес-парк «Румянцево», корп. Б,
подъезд 5, офис 506 Б

+7 (495) 240-54-57