НОВЫЕ ТЕХНОЛОГИИ И ОБОРУДОВАНИЕ (NEW TECHNOLOGIES AND EQUIPMENT)

ПРИНЦИПЫ СОЗДАНИЯ ТУРБОУСТАНОВОК МАЛОЙ И СРЕДНЕЙ МОЩНОСТИ, РАБОТАЮЩИХ НА СВЕРХКРИТИЧЕСКОМ ДИОКСИДЕ УГЛЕРОДА

(DESIGN PRINCIPLES OF LOW AND MEDIUM POWER TURBINE UNITS, FUELLED BY SUPERCRITICAL CARBON DIOXIDE)

На современном этапе развития энергетики ключевую роль играет рациональное и эффективное использование энергии, способствующее созданию экологически чистой и безопасной энергетической системы. В условиях ограниченности ресурсов для решения задачи повышения энергоэффективности актуальной становится разработка новых технологий производства электроэнергии. Одна из них связана с применением сверхкритического диоксида углерода. В статье представлен обзор современного состояния использования сверхкритического диоксида углерода в качестве рабочего тела в установках для производства электроэнергии по циклу Брайтона. Описаны история развития данной технологии и физико-химические свойства сверхкритического диоксида углерода. Показаны две типовые технологические схемы производства электроэнергии на его основе. Рассмотрен наиболее подробно изученный замкнутый цикл и его основные преимущества. Анализ описанных вариантов использования тепловой энергии свидетельствует о том, что применение сверхкритического диоксида углерода и другой рабочей жидкости может привести к значительному повышению эффективности процесса по сравнению с традиционными рабочими телами.
Рассмотрены потенциальные области применения сверхкритического диоксида углерода. Проанализирована модель производства электроэнергии с использованием ядерного, солнечного и промышленного тепла. В заключение проведено сравнение разработок институтов и лабораторий разных стран последних лет и показаны наиболее важные результаты их научных исследований.

At the current stage of power industry development, reasonable and efficient use of energy facilitating the establishment of an environmentally responsible and safe power system plays a critical role. In the setting of limited resources, development of innovative power generation technologies becomes essential to solve the tasks of improving energy efficiency. One of the technologies refers to the use of supercritical carbon dioxide.
The article represents a state-of-the-art review of using supercritical carbon dioxide as a working fluid for Brayton cycle power plants. History of the technology, as well as physical and chemical properties of supercritical carbon dioxide are described. The article also shows two typical process flow diagrams of power generation based on supercritical carbon dioxide. The most well-known closed cycle and its key advantages are considered. Analysis of the described heat energy use cases points to the fact that the use of supercritical carbon dioxide and other working fluids may result in significant improvement of the process efficiency as compared to conventional working fluids.
The article also covers potential uses of supercritical carbon dioxide and analyses the model of electric power generation based on nuclear, solar, and industrial heat. Finally, it compares recent developments of institutes and laboratories from different countries and describes the results of their research work.

СВЕРХКРИТИЧЕСКИЙ ДИОКСИД УГЛЕРОДА, ЦИКЛ БРАЙТОНА, ТУРБИНА, КОМПРЕССОР, ТЕПЛООБМЕННИК, АТОМНАЯ ЭНЕРГИЯ, ГЕЛИОТЕРМАЛЬНАЯ ЭНЕРГЕТИКА

SUPERCRITICAL CARBON DIOXIDE, BRAYTON CYCLE, TURBINE, COMPRESSOR, HEAT EXCHANGER, NUCLEAR ENERGY, SOLAR THERMAL POWER GENERATION

Б. Гун, ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого» (Санкт-Петербург, Россия), outbowenlook@outlook.com

В.А. Рассохин, д.т.н., проф., ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого», rassohin_va@spbstu.ru

В.В. Барсков, д.т.н., ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого», barskov_vv@spbstu.ru

М.А. Лаптев, ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого», mikhail.laptev@outlook.com

Л.О. Вокин, ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого», vokin_lo@spbstu.ru

С.Н. Беседин, д.т.н., ФГБОУ ВО «Санкт-Петербургский государственный морской технический университет» (Санкт-Петербург, Россия), sb68595@gmail.com

Н.Н. Кортиков, д.т.н., проф., ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого», kortikov_nn@spbstu.ru

А.И. Рыбников, д.т.н., проф., ОАО «Научно-производственное объединение по исследованию и проектированию энергетического оборудования им. И.И. Ползунова» (Санкт-Петербург, Россия), metall126@mail.ru

B. Gong, Peter the Great Saint Petersburg Polytechnic University (Saint Petersburg, Russia), outbowenlook@outlook.com

V.A. Rassokhin, DSc in Engineering, Professor, Peter the Great Saint Petersburg Polytechnic University, rassohin_va@spbstu.ru

V.V. Barskov, PhD in Engineering, Peter the Great Saint Petersburg Polytechnic University, barskov_vv@spbstu.ru

М.А. Laptev, Peter the Great Saint Petersburg Polytechnic University, mikhail.laptev@outlook.com

L.O. Vokin, Peter the Great Saint Petersburg Polytechnic University, vokin_lo@spbstu.ru

S.N. Besedin, DSc in Engineering, State Marine Technical University (Saint Petersburg, Russia), sb68595@gmail.com

N.N. Kortikov, DSc in Engineering, Professor, Peter the Great Saint Petersburg Polytechnic University, kortikov_nn@spbstu.ru

A.I. Rybnikov, DSc in Engineering, Professor, JSC I.I. Polzunov Scientific and Development Association on Research and Design of Power Equipment (Saint Petersburg, Russia), metall126@mail.ru

Liu Y., Wang Y., Huang D. Supercritical CO2 Brayton cycle: A state-of-the-art review // Energy. 2019. Vol. 189. Article ID 115900. DOI: 10.1016/j.energy.2019.115900.

Crespi F., Gavagnin G., Sánchez D., Martínez G.S. Supercritical carbon dioxide cycles for power generation: A review // Appl. Energy. 2017. Vol. 195. P. 152–183. DOI: 10.1016/j.apenergy.2017.02.048.

Koytsoumpa E.I., Bergins C., Kakaras E. The CO2 economy: Review of CO2 capture and reuse technologies // J. Supercrit. Fluids. 2018. Vol. 132. P. 3–16. DOI: 10.1016/j.supflu.2017.07.029.

File:Carbon dioxide pressure-temperature phase diagram-ru.svg // Wikimedia Commons: репозиторий. URL: https://commons.wikimedia.org/wiki/File:Carbon_dioxide_pressure-temperature_phase_diagram-ru.svg (дата обращения: 07.11.2023).

Guo J.Q., Li M.J., He Y.L., et al. A systematic review of supercritical carbon dioxide (S-CO2) power cycle for energy industries: Technologies, key issues, and potential prospects // Energy Convers. Manage. 2022. Vol. 258. Article ID 115437. DOI: 10.1016/j.enconman.2022.115437.

Wang X., Dai Y. Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study // Appl. Energy. 2016. Vol. 170. P. 193–207. DOI: 10.1016/j.apenergy.2016.02.112.

Dostal V. A supercritical carbon dioxide cycle for next generation nuclear reactors: DSc thesis. Cambridge, MA, USA: Massachusetts Institute of Technology, 2004. 317 p.

Iverson B.D., Conboy T.M., Pasch J.J., Kruizenga A.M. Supercritical CO2 Brayton cycles for solar-thermal energy // Appl. Energy. 2013. Vol. 111. P. 957–970. DOI: 10.1016/j.apenergy.2013.06.020.

Cha J.E., Park J.H., Lee G., et al. 500 kW supercritical CO2 power generation system for waste heat recovery: System design and compressor performance test results // Appl. Therm. Eng. 2021. Vol. 194. Article ID 117028. DOI: 10.1016/j.applthermaleng.2021.117028.

Moisseytsev A., Sienicki J.J. Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor // Nucl. Eng. Des. 2009. Vol. 239, No. 7. P. 1362–1371. DOI: 10.1016/j.nucengdes.2009.03.017.

Tsimpoukis D., Syngounas E., Bellos E., et al. Thermodynamic and economic analysis of a supermarket transcritical CO2 refrigeration system coupled with solar-fed supercritical CO2 Brayton and organic Rankine cycles // Energy Convers. Manage.: X. 2023. Vol. 18. Article ID 100351. DOI: 10.1016/j.ecmx.2023.100351.

Wang Y., Xu J., Liu Q., et al. New combined supercritical carbon dioxide cycles for coal-fired power plants // Sustainable Cities and Society. 2019. Vol. 50. Article ID 101656. DOI: 10.1016/j.scs.2019.101656.

Tong Y., Duan L., Yang M., Pang L. Design optimization of a new supercritical CO2 single reheat coal-fired power generation system // Energy. 2022. Vol. 239. Pt. B. Article ID 122174. DOI: 10.1016/j.energy.2021.122174.

Dostal V., Driscoll M.J., Hejzlar P., Wang Y. Supercritical CO2 cycle for fast gas-cooled reactors // Proc. ASME Turbo Expo: Power Land, Sea, Air. 2004. Vol. 7. P. 683–392. DOI: 10.1115/GT2004-54242.

Li Z., Liu C., Xing M., et al. Research of supercritical carbon dioxide thermal power system based on lead-cooled fast reactor // Proceedings of the 29th International Conference on Nuclear Engineering. New York, NY, USA: ASME, 2022. Article ID ICONE29-90432. DOI: 10.1115/ICONE29-90432.

Vivaldi D., Gruy F., Simon N., Perrais C. Modelling of a CO2-gas jet into liquid-sodium following a heat exchanger leakage scenario in Sodium Fast Reactors // Chem. Eng. Res. Des. 2013. Vol. 91, No. 4. P. 640–648. DOI: 10.1016/j.cherd.2013.02.011.

Гун Б. Применение диоксида углерода в сверхкритическом цикле Брайтона в гелиотермальной энергетике // Возобновляемая энергия планеты: сб. материалов II Всеросс. конкурса студентов, аспирантов и молодых ученых с междунар. участием. М.: МГТУ им. Н.Э. Баумана, 2022. С. 49–54.

Al-Sulaiman F.A., Atif M. Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower // Energy. 2015. Vol. 82. P. 61–71. DOI: 10.1016/j.energy.2014.12.070.

White M.T., Bianchi G., Chai L., et al. Review of supercritical CO2 technologies and systems for power generation // Appl. Therm. Eng. 2021. Vol. 185. Article ID 116447. DOI: 10.1016/j.applthermaleng.2020.1164.

Fleming D., Holschuh T., Conboy T., et al. Scaling considerations for a multi-megawatt class supercritical CO2 Brayton cycle and path forward for commercialization // ASME Turbo Expo 2012: Proceedings of the Turbine Technical Conference and Exposition. New York, NY, USA: ASME, 2013. P. 953–960. DOI: 10.1115/GT2012-68484.

Sandia’s supercritical carbon-dioxide/Brayton-cycle laboratory signs important MOU with industry partners // Sandia National Laboratories: офиц. сайт. URL: https://energy.sandia.gov/sandias-supercritical-carbon-dioxidebrayton-cycle-laboratory-signs-important-mou-with-industrypartners/ (дата обращения: 07.11.2023).

Oh B.S., Jeong Y., Cho S.K., Lee J.I. Controllability of S-CO2 power system coupled small modular reactor with improved compressor design // Appl. Therm. Eng. 2021. Vol. 192. Article ID 116957. DOI: 10.1016/j.applthermaleng.2021.1169.

Son S., Kwon J., Oh B.S., et al. Radionuclide transport in a long-term operation supercritical CO2-cooled direct-cycle small nuclear reactor // Int. J. Energy Res. 2020. Vol. 44, No. 5. P. 3905–3921. DOI: 10.1002/er.5189.

Xi’an Thermal Power Research Institute Co., Ltd: офиц. сайт. URL: http://www.tpri.com.cn/ (дата обращения: 07.11.2023).

Liu Y. Wang Y, Huang D. Supercritical CO2 Brayton cycle: A state-of-the-art review. Energy. 2019; 189: article ID 115900. https://doi.org/10.1016/j.energy.2019.115900.

Crespi F, Gavagnin G, Sánchez D, Martínez GS. Supercritical carbon dioxide cycles for power generation: A review. Appl. Energy. 2017; 195: 152–183. https://doi.org/10.1016/j.apenergy.2017.02.048.

Koytsoumpa EI, Bergins C, Kakaras E. The CO2 economy: Review of CO2 capture and reuse technologies. J. Supercrit. Fluids. 2018; 132: 3–16. https://doi.org/10.1016/j.supflu.2017.07.029.

Wikimedia Commons. File:Carbon dioxide pressure-temperature phase diagram-ru.svg. Available from: https://commons.wikimedia.org/wiki/File:Carbon_dioxide_pressure-temperature_phase_diagram-ru.svg [Accessed: 7 November 2023].

Guo JQ, Li MJ, He YL, Jiang T, Ma T, Xu J-L, et al. A systematic review of supercritical carbon dioxide (S-CO2) power cycle for energy industries: Technologies, key issues, and potential prospects. Energy Convers. Manage. 2022; 258: article ID 115437. https://doi.org/10.1016/j.enconman.2022.115437.

Wang X, Dai Y. Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study. Appl. Energy. 2016; 170: 193–207. https://doi.org/10.1016/j.apenergy.2016.02.112.

Dostal V. A supercritical carbon dioxide cycle for next generation nuclear reactors. DSc thesis. Massachusetts Institute of Technology; 2004.

Iverson BD, Conboy TM, Pasch JJ, Kruizenga AM. Supercritical CO2 Brayton cycles for solar-thermal energy. Appl. Energy. 2013; 111: 957–970. https://doi.org/10.1016/j.apenergy.2013.06.020.

Cha JE, Park JH, Lee G, Seo H, Lee S, Chung H-J, et al. 500 kW supercritical CO2 power generation system for waste heat recovery: System design and compressor performance test results. Appl. Therm. Eng. 2021; 194: article ID 117028. https://doi.org/10.1016/j.applthermaleng.2021.117028.

Moisseytsev A, Sienicki JJ. Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor. Nucl. Eng. Des. 2009; 239(7): 1362–1371. https://doi.org/10.1016/j.nucengdes.2009.03.017.

Tsimpoukis D, Syngounas E, Bellos E, Koukou M, Tzivanidis C, Anagnostatos S, et al. Thermodynamic and economic analysis of a supermarket transcritical CO2 refrigeration system coupled with solar-fed supercritical CO2 Brayton and organic Rankine cycles. Energy Convers. Manage.: X. 2023; 18: article ID 100351. https://doi.org/10.1016/j.ecmx.2023.100351.

Wang Y, Xu J, Liu Q, Sun E, Chen C. New combined supercritical carbon dioxide cycles for coal-fired power plants. Sustainable Cities and Society. 2019; 50: article ID 101656. https://doi.org/10.1016/j.scs.2019.101656.
 
Tong Y, Duan L, Yang M, Pang L. Design optimization of a new supercritical CO2 single reheat coal-fired power generation system. Energy. 2022; 239(B): article ID 122174. https://doi.org/10.1016/j.energy.2021.122174.

Dostal V, Driscoll MJ, Hejzlar P, Wang Y. Supercritical CO2 cycle for fast gas-cooled reactors. Proc. ASME Turbo Expo: Power Land, Sea, Air. 2004; 7: 683–392. https://doi.org/10.1115/GT2004-54242.

Li Z, Liu C, Xing M, Zheng G, Wang Y. Research of supercritical carbon dioxide thermal power system based on lead-cooled fast reactor. In: ASME Proceedings of the 29th International Conference on Nuclear Engineering, 8–12 August 2022, Virtual, Online. New York, NY, USA: ASME; 2022. article ID ICONE29-90432. https://doi.org/10.1115/ICONE29-90432.

Vivaldi D, Gruy F, Simon N, Perrais C. Modelling of a CO2-gas jet into liquid-sodium following a heat exchanger leakage scenario in Sodium Fast Reactors. Chem. Eng. Res. Des. 2013; 91(4): 640–648. https://doi.org/10.1016/j.cherd.2013.02.011.

Gun B. Application of carbon dioxide in the supercritical Brayton cycle in solar thermal energy. In: BMSTU Renewable energy of the planet: Proceedings of the 2nd All-Russian Competition of Students, Graduate Students, and Young Scientists with International Participation, 26 March – 3 June 2022, Moscow, Russia. Moscow: BMSTU; 2022. p. 49–54. (In Russian)

Al-Sulaiman FA, Atif M. Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower. Energy. 2015; 82: 61–71. https://doi.org/10.1016/j.energy.2014.12.070.

White MT, Bianchi G, Chai L, Tassou SA, Sayma AI. Review of supercritical CO2 technologies and systems for power generation. Appl. Therm. Eng. 2021; 185: article ID 116447. https://doi.org/10.1016/j.applthermaleng.2020.1164.

Fleming D, Holschuh T, Conboy T, Rochau G, Fuller R. Scaling considerations for a multi-megawatt class supercritical CO2 Brayton cycle and path forward for commercialization. In: ASME ASME Turbo Expo 2012: Proceedings of the Turbine Technical Conference and Exposition, 11–15 June 2012, Copenhagen, Denmark. New York, NY, USA: ASME; 2013. p. 953–960. https://doi.org/10.1115/GT2012-68484.

Sandia National Laboratories. Sandia’s supercritical carbon-dioxide/Brayton-cycle laboratory signs important MOU with industry partners. Available from: https://energy.sandia.gov/sandias-supercritical-carbon-dioxidebrayton-cycle-laboratory-signs-important-mou-with-industry-partners/ [Accessed: 7 November 2023].

Oh BS, Jeong Y, Cho SK, Lee JI. Controllability of S-CO2 power system coupled small modular reactor with improved compressor design. Appl. Therm. Eng. 2021; 192: article ID 116957. https://doi.org/10.1016/j.applthermaleng.2021.1169.

Son S, Kwon J, Oh BS, Cho SK, Lee JI. Radionuclide transport in a long-term operation supercritical CO2-cooled direct-cycle small nuclear reactor. Int. J. Energy Res. 2020; 44(5): 3905–3921. https://doi.org/10.1002/er.5189.

Xi’an Thermal Power Research Institute Co., Ltd. Home page. Available from: http://www.tpri.com.cn/ [Accessed: 7 November 2023].
NEFTEGAS.info

Внимание к деталям — от идеи
до воплощения! Только актуальная информация и свежие новости.

Контакты

108811, г. Москва, Киевское ш.,
Бизнес-парк «Румянцево», корп. Б,
подъезд 5, офис 506 Б

+7 (495) 240-54-57