Специздание 2023

Обзорная статья

УДК 543.421/.424:621.373.826
(UDK 543.421/.424:621.373.826)

Для получения доступа к статьям

Авторизуйтесь

ПРИБОРОСТРОЕНИЕ

ПРИМЕНЕНИЕ ФЕМТОСЕКУНДНЫХ ЛАЗЕРОВ БЛИЖНЕГО ИНФРАКРАСНОГО ДИАПАЗОНА ДЛЯ ДЕТЕКТИРОВАНИЯ ГАЗОВ

(APPLICATION OF FEMTOSECOND NEAR-INFRARED LASERS FOR GAS DETECTION)

В последнее время у российских производителей проявляется повышенный интерес к спектральным методам детектирования компонентов в газовых средах, очевидные преимущества которых состоят в высоком быстродействии, хорошей чувствительности, высокой избирательности по компонентам и отсутствии необходимости использования дополнительных расходных материалов. В области широкополосной прецизионной спектроскопии перспективным направлением выглядит применение метода Фурье-обработки сигналов от когерентных источников излучения в виде фемтосекундных лазеров. Такой подход позволяет существенно повысить максимально доступное разрешение спектрометров при уменьшении эквивалентного поглощения шума на спектральную компоненту. В статье представлен современный взгляд на методы прецизионной спектроскопии посредством оптических частотных гребенок, генерируемых фемтосекундными лазерами с синхронизацией мод.

Recently, Russian manufacturers have shown increased interest in spectral methods of component detection in gas environment, the obvious advantages of which are high speed, good sensitivity, high selectivity for components and no need for additional consumables. Application of Fourier processing method of signals from incoherent radiation sources in the form of femtosecond lasers is a promising trend in the field of broadband precision spectroscopy. This approach makes it possible to significantly increase the maximum available resolution of spectrometers while reducing the equivalent noise absorption per spectral component. The article presents a modern view on methods of precision spectroscopy by means of optical frequency combs generated by femtosecond lasers with mode synchronisation.

ФЕМТОСЕКУНДНЫЙ ВОЛОКОННЫЙ ЛАЗЕР, СИНХРОНИЗАЦИЯ МОД, ОПТИЧЕСКАЯ ЧАСТОТНАЯ ГРЕБЕНКА, КОМБ-СПЕКТРОМЕТРИЯ, ДЕТЕКТИРОВАНИЕ ГАЗА, СПЕКТРАЛЬНЫЙ АНАЛИЗ, СИСТЕМА ГАЗОАНАЛИЗА

FEMTOSECOND FIBER LASER, MODE SYNCHRONISATION, OPTICAL FREQUENCY COMB, COMB SPECTROMETRY, GAS DETECTION, SPECTRAL ANALYSIS, GAS ANALYSIS SYSTEM

И.О. Орехов, ФГБОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (Москва, Россия), orekhovio@bmstu.ru

У.С. Лаздовская, ФГБОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)», usl99@mail.ru

С.Г. Сазонкин, к.т.н., ФГБОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)», sazstas@bmstu.ru

А.Ю. Федоренко, ФГБОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)», a.fedorenko39@yandex.ru

П.В. Платонов, ФГБОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)», pavelplatonov@bmstu.ru

М.А. Ваглай, ПАО «Газпром автоматизация» (Москва, Россия), M.Vaglay@gazprom-auto.ru

А.В. Кротов, к.т.н., ПАО «Газпром автоматизация», A.Krotov@gazprom-auto.ru

I.O. Orekhov, Bauman Moscow State Technical University (Moscow, Russia), orekhovio@bmstu.ru

U.S. Lazdovskaia, Bauman Moscow State Technical University, usl99@mail.ru

S.G. Sazonkin, PhD in Engineering, Bauman Moscow State Technical University, sazstas@bmstu.ru

A.Yu. Fedorenko, Bauman Moscow State Technical University, a.fedorenko39@yandex.ru

P.V. Platonov, Bauman Moscow State Technical University, pavelplatonov@bmstu.ru

M.A. Vaglay, PJSC “Gazprom avtomatizatsiya” (Moscow, Russia), M.Vaglay@gazprom-auto.ru

A.V. Krotov, PhD in Engineering, PJSC “Gazprom avtomatizatsiya”, A.Krotov@gazprom-auto.ru

Picqué N., Hänsch T.W. Frequency comb spectroscopy // Nat. Photonics. 2019. Vol. 13, No. 3. P. 146–157. DOI: 10.1038/s41566-018-0347-5.

Hall J.L. Optical frequency measurement: 40 years of technology revolutions // IEEE J. Sel. Top. Quant. 2020. Vol. 6, No. 6. P. 1136–1144. DOI: 10.1109/2944.902162.

Diddams S.A., Bartels A., Ramond T.M., et al. Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals // IEEE J. Sel. Top. Quant. 2003. Vol. 9, No. 4. P. 1072–1080. DOI: 10.1109/JSTQE.2003.819096.

Fortier T., Baumann E. 20 years of developments in optical frequency comb technology and applications // Commun. Phys. 2019. Vol. 2, No. 1. Article ID 153. DOI: 10.1038/s42005-019-0249-y.

Moon H.S., Ryu H.Y., Lee S.H., Suh H.S. Precision spectroscopy of Rb atoms using single comb-line selected from fiber optical frequency comb // Opt. Express. 2011. Vol. 19, No. 17. P. 15855–15863. DOI: 10.1364/oe.19.015855.

Sugiyama Y., Kashimura T., Kashimoto K., et al. Precision dual-comb spectroscopy using wavelength-converted frequency combs with low repetition rates // Sci. Rep. 2023. Vol. 13. Article ID 2549. DOI: 10.1038/s41598-023-29734-2.

Reinhardt S., Peters E., Hänsch T.W., Udem T. Two-photon direct frequency comb spectroscopy with chirped pulses // Phys. Rev. A. 2010. Vol. 81, No. 3. Article ID 033427. DOI: 10.1103/PhysRevA.81.033427.

Sinclair L.C., Deschênes J.D., Sonderhouse L., et al. Invited article: A compact optically coherent fiber frequency comb // Rev. Sci. Instrum. 2015. Vol. 86, No. 8. Article ID 081301. DOI: 10.1063/1.4928163.

Coddington I., Swann W.C., Newbury N.R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs // Phys. Rev. Lett. 2008. Vol. 100. Article ID 013902. DOI: 10.1103/PhysRevLett.100.013902.

Maslowski P., Lee K.F., Johansson A.C., et al. Surpassing the path-limited resolution of Fourier transform spectrometry with frequency combs // Phys. Rev. A. 2016. Vol. 93, No. 2. Article ID 021802(R). DOI: 10.1103/PhysRevA.93.021802.

Schiller S. Spectrometry with frequency combs // Opt. Lett. 2002. Vol. 27, No. 9. P. 766–768. DOI: 10.1364/ol.27.000766.

Mandon J., Guelachvili G., Picqué N. Fourier transform spectroscopy with a laser frequency comb // Nat. Photonics. 2009. Vol. 3, No. 2. P. 99–102. DOI: 10.1038/nphoton.2008.293.

Okubo S., Iwakuni K., Inaba H., et al. Ultra-broadband dual-comb spectroscopy across 1.0–1.9 μm // Applied Physics Express. 2015. Vol. 8, No. 8. Article ID 082402. DOI: 10.7567/apex.8.082402.

Shaik A.K., Epuru N.R., Syed H., et al. Femtosecond laser induced breakdown spectroscopy based standoff detection of explosives and discrimination using principal component analysis // Optics Express. 2018. Vol. 26, No. 7. P. 8069–8083. DOI: 10.1364/OE.26.008069.

Newbury N.R., Swann W.C. Low-noise fiber-laser frequency combs [invited] // J. Opt. Soc. Am. B. 2007. Vol. 24, No. 8. P. 1756–1770. DOI: 10.1364/josab.24.001756.

Eckstein J.N., Ferguson A.I., Hänsch T.W. High-resolution two-photon spectroscopy with picosecond light pulses // Phys. Rev. Lett. 1978. Vol. 40, No. 13. P. 847–850. DOI: 10.1103/PhysRevLett.40.847.

Marian A., Stowe M.C., Lawall J.R., et al. United time-frequency spectroscopy for dynamics and global structure // Science. 2004. Vol. 306, No. 5704. P. 2063–2068. DOI: 10.1126/science.1105.

Cingöz A., Yost D.C., Allison T.K., et al. Direct frequency comb spectroscopy in the extreme ultraviolet // Nature. 2012. Vol. 482, No. 7383. P. 68–71. DOI: 10.1038/nature10711.

Yost D.C., Matveev A., Grinin A., et al. Spectroscopy of the hydrogen 1S-3S transition with chirped laser pulses // Phys. Rev. A. 2016. Vol. 93, No. 4. Article ID 042509. DOI: 10.1103/PhysRevA.93.042509.

Solaro C., Meyer S., Fisher K., et al. Direct frequency-comb-driven Raman transitions in the terahertz range // Phys. Rev. Lett. 2018. Vol. 120, No. 25. Article ID 253601. DOI: 10.1103/PhysRevLett.120.253601.

Barmes I., Witte S., Eikema K.S.E. Spatial and spectral coherent control with frequency combs // Nat. Photonics. 2012. Vol. 7, No. 1. P. 38–42. DOI: 10.1038/nphoton.2012.299.

Porat G., Heyl C.M., Schoun S.B., et al. Phase-matched extreme-ultraviolet frequency-comb generation // Nat. Photonics. 2018. Vol. 12, No. 7. P. 387–391. DOI: 10.1038/s41566-018-0199-z.

Mandon J., Guelachvili G., Picqué N., et al. Femtosecond laser Fourier transform absorption spectroscopy // Opt. Lett. 2007. Vol. 32, No. 12. P. 1677–1679. DOI: 10.1364/OL.32.001677.

Giaccari P., Deschênes J.-D., Saucier P., et al. Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based modelocked lasers with a novel referencing method // Opt. Lett. 2008. Vol. 16, No. 6. P. 4347–4365. DOI: 10.1364/OE.16.004347.

Griffiths P., Hasten J.A. Fourier transform infrared spectrometry. 2nd ed. Hoboken, NJ, USA: John Wiley & Sons, 2007. 535 p. DOI: 10.1002/9780470106310.ch9.

Coddington I., Newbury N., Swann W. Dual-comb spectroscopy // Optica. 2016. Vol. 3, No. 4. P. 414–426. DOI: 10.1364/optica.3.000414.

Coddington I., Swann W.C., Newbury N.R. Coherent dual-comb spectroscopy at high signal-to-noise ratio // Phys. Rev. A. 2010. Vol. 82, No. 4. Article ID 043817. DOI: 10.1103/PhysRevA.82.043817.

Ideguchi T., Poisson A., Guelachvili G., et al. Adaptive real-time dual-comb spectroscopy // Nat. Commun. 2014. Vol. 5. Article ID 4375. DOI: 10.1038/ncomms4375.

Rieker G.B., Giorgetta F.R., Swann W.C., et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths // Optica. 2014. Vol. 1, No. 5. P. 290–298. DOI: 10.1364/optica.1.000290.

Picqué N, Hänsch TW. Frequency comb spectroscopy. Nat. Photonics. 2019; 13(3): 146–157. https://doi.org/10.1038/s41566-018-0347-5.

Hall JL. Optical frequency measurement: 40 years of technology revolutions. IEEE J. Sel. Top. Quant. 2020; 6(6): 1136–1144. https://doi.org/10.1109/2944.902162.

Diddams SA, Bartels A, Ramond TM, Oates CW, Bize S, Curtis EA, et al. Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals. IEEE J. Sel. Top. Quant. 2003; 9(4): 1072–1080. https://doi.org/10.1109/JSTQE.2003.819096.

Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2019; 2(1): article ID 153. https://doi.org/10.1038/s42005-019-0249-y.

Moon HS, Ryu HY, Lee SH, Suh HS. Precision spectroscopy of Rb atoms using single comb-line selected from fiber optical frequency comb. Opt. Express. 2011; 19(17): 15855–15863. https://doi.org/10.1364/oe.19.015855.

Sugiyama Y, Kashimura T, Kashimoto K, Akamatsu D, Hong F-L. Precision dual-comb spectroscopy using wavelength-converted frequency combs with low repetition rates. Sci. Rep. 2023; 13: article ID 2549. https://doi.org/10.1038/s41598-023-29734-2.

Reinhardt S, Peters E, Hänsch TW, Udem T. Two-photon direct frequency comb spectroscopy with chirped pulses. Phys. Rev. A. 2010; 81(3): article ID 033427. https://doi.org/10.1103/physreva.81.033427.

Sinclair LC, Deschênes JD, Sonderhouse L, Khader IH, Baumann E, Newbury NR, et al. Invited article: A compact optically coherent fiber frequency comb. Rev. Sci. Instrum. 2015; 86(8): article ID 081301. https://doi.org/10.1063/1.4928163.

Coddington I, Swann WC, Newbury NR. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 2008; 100: article ID 013902. https://doi.org/10.1103/physrevlett.100.013902.

Maslowski P, Lee KF, Johansson AC, Khodabakhsh A, Kowzan G, Rutkowski L, et al. Surpassing the path-limited resolution of Fourier transform spectrometry with frequency combs. Phys. Rev. A. 2016; 93(2): article ID 021802(R). https://doi.org/10.1103/physreva.93.021802.

Schiller S. Spectrometry with frequency combs. Opt. Lett. 2002; 27(9): 766–768. https://doi.org/10.1364/ol.27.000766.

Mandon J, Guelachvili G, Picqué N. Fourier transform spectroscopy with a laser frequency comb. Nat. Photonics. 2009; 3(2): 99–102. https://doi.org/10.1038/nphoton.2008.293.

Okubo S, Iwakuni K, Inaba H, Hosaka K, Onae A, Sasada H, et al. Ultra-broadband dual-comb spectroscopy across 1.0–1.9 μm. Applied Physics Express. 2015; 8(8): article ID 082402. https://doi.org/10.7567/apex.8.082402.

Shaik AK, Epuru NR, Syed H, Byram C, Soma VR, et al. Femtosecond laser induced breakdown spectroscopy based standoff detection of explosives and discrimination using principal component analysis. Optics Express. 2018; 26(7): 8069–8083. https://doi.org/10.1364/oe.26.008069.

Newbury NR, Swann WC. Low-noise fiber-laser frequency combs [invited]. J. Opt. Soc. Am. B. 2007; 24(8): 1756–1770. https://doi.org/10.1364/josab.24.001756.

Eckstein JN, Ferguson AI, Hänsch TW. High-resolution two-photon spectroscopy with picosecond light pulses. Phys. Rev. Lett. 1978; 40(13): 847–850. https://doi.org/10.1103/PhysRevLett.40.847.

Marian A, Stowe MC, Lawall JR, Felinto D, Ye J. United time-frequency spectroscopy for dynamics and global structure. Science. 2004; 306(5704): 2063–2068. https://doi.org/10.1126/science.1105.

Cingöz A, Yost DC, Allison TK, Ruehl A, Fermann ME, Hartl I, et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature. 2012; 482(7383): 68–71. https://doi.org/10.1038/nature10711.

Yost DC, Matveev A, Grinin A, Peters E, Maisenbacher L, Beyer A, et al. Spectroscopy of the hydrogen 1S-3S transition with chirped laser pulses. Phys. Rev. A. 2016; 93(4): article ID 042509. https://doi.org/10.1103/PhysRevA.93.042509.

Solaro C, Meyer S, Fisher K, DePalatis MV, DrewsenM. Direct frequency-comb-driven Raman transitions in the terahertz range. Phys. Rev. Lett. 2018; 120(25): article ID 253601. https://doi.org/10.1103/PhysRevLett.120.253601.

Barmes I, Witte S, Eikema KSE. Spatial and spectral coherent control with frequency combs. Nat. Photonics. 2012; 7(1): 38–42. https://doi.org/10.1038/nphoton.2012.299.

Porat G, Heyl CM, Schoun SB, Benko C, Dörre N, Corwin KL, et al. Phase-matched extreme-ultraviolet frequency-comb generation. Nat. Photonics. 2018; 12(7): 387–391. https://doi.org/10.1038/s41566-018-0199-z.

Mandon J, Guelachvili G, Picqué N, Druon F, Georges P. Femtosecond laser Fourier transform absorption spectroscopy. Opt. Lett. 2007; 32(12): 1677–1679. https://doi.org/10.1364/ol.32.001677.

Giaccari P, Deschênes J-D, Saucier P, Saucier P, Genest J, Tremblay P. Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method. Opt. Lett. 2008; 16(6): 4347–4365. https://doi.org/10.1364/oe.16.004347.

Griffiths P, Hasten JA. Fourier Transform Infrared Spectrometry. 2nd ed. Hoboken, NJ, USA: John Wiley & Sons; 2007. https://doi.org/10.1002/9780470106310.ch9.

Coddington I, Newbury N, Swann W. Dual-comb spectroscopy. Optica. 2016; 3(4): 414–426. https://doi.org/10.1364/optica.3.000414.

Coddington I, Swann WC, Newbury NR. Coherent dual-comb spectroscopy at high signal-to-noise ratio. Phys. Rev. A. 2010; 82(4): article ID 043817. https://doi.org/10.1103/physreva.82.043817.

Ideguchi T, Poisson A, Guelachvili G, Picqué N, Hänsch TW. Adaptive real-time dual-comb spectroscopy. Nat. Commun. 2014; 5: article ID 4375. https://doi.org/10.1038/ncomms4375.

Rieker GB, Giorgetta FR, Swann WC, Kofler J, Zolot AM, Sinclair LC, et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica. 2014; 1(5): 290–298. https://doi.org/10.1364/optica.1.000290.
NEFTEGAS.info

Внимание к деталям — от идеи
до воплощения! Только актуальная информация и свежие новости.

Контакты

108811, г. Москва, Киевское ш.,
Бизнес-парк «Румянцево», корп. Б,
подъезд 5, офис 506 Б

+7 (495) 240-54-57