Picqué N, Hänsch TW. Frequency comb spectroscopy. Nat. Photonics. 2019; 13(3): 146–157. https://doi.org/10.1038/s41566-018-0347-5.
Hall JL. Optical frequency measurement: 40 years of technology revolutions. IEEE J. Sel. Top. Quant. 2020; 6(6): 1136–1144. https://doi.org/10.1109/2944.902162.
Diddams SA, Bartels A, Ramond TM, Oates CW, Bize S, Curtis EA, et al. Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals. IEEE J. Sel. Top. Quant. 2003; 9(4): 1072–1080. https://doi.org/10.1109/JSTQE.2003.819096.
Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2019; 2(1): article ID 153. https://doi.org/10.1038/s42005-019-0249-y.
Moon HS, Ryu HY, Lee SH, Suh HS. Precision spectroscopy of Rb atoms using single comb-line selected from fiber optical frequency comb. Opt. Express. 2011; 19(17): 15855–15863. https://doi.org/10.1364/oe.19.015855.
Sugiyama Y, Kashimura T, Kashimoto K, Akamatsu D, Hong F-L. Precision dual-comb spectroscopy using wavelength-converted frequency combs with low repetition rates. Sci. Rep. 2023; 13: article ID 2549. https://doi.org/10.1038/s41598-023-29734-2.
Reinhardt S, Peters E, Hänsch TW, Udem T. Two-photon direct frequency comb spectroscopy with chirped pulses. Phys. Rev. A. 2010; 81(3): article ID 033427. https://doi.org/10.1103/physreva.81.033427.
Sinclair LC, Deschênes JD, Sonderhouse L, Khader IH, Baumann E, Newbury NR, et al. Invited article: A compact optically coherent fiber frequency comb. Rev. Sci. Instrum. 2015; 86(8): article ID 081301. https://doi.org/10.1063/1.4928163.
Coddington I, Swann WC, Newbury NR. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 2008; 100: article ID 013902. https://doi.org/10.1103/physrevlett.100.013902.
Maslowski P, Lee KF, Johansson AC, Khodabakhsh A, Kowzan G, Rutkowski L, et al. Surpassing the path-limited resolution of Fourier transform spectrometry with frequency combs. Phys. Rev. A. 2016; 93(2): article ID 021802(R). https://doi.org/10.1103/physreva.93.021802.
Schiller S. Spectrometry with frequency combs. Opt. Lett. 2002; 27(9): 766–768. https://doi.org/10.1364/ol.27.000766.
Mandon J, Guelachvili G, Picqué N. Fourier transform spectroscopy with a laser frequency comb. Nat. Photonics. 2009; 3(2): 99–102. https://doi.org/10.1038/nphoton.2008.293.
Okubo S, Iwakuni K, Inaba H, Hosaka K, Onae A, Sasada H, et al. Ultra-broadband dual-comb spectroscopy across 1.0–1.9 μm. Applied Physics Express. 2015; 8(8): article ID 082402. https://doi.org/10.7567/apex.8.082402.
Shaik AK, Epuru NR, Syed H, Byram C, Soma VR, et al. Femtosecond laser induced breakdown spectroscopy based standoff detection of explosives and discrimination using principal component analysis. Optics Express. 2018; 26(7): 8069–8083. https://doi.org/10.1364/oe.26.008069.
Newbury NR, Swann WC. Low-noise fiber-laser frequency combs [invited]. J. Opt. Soc. Am. B. 2007; 24(8): 1756–1770. https://doi.org/10.1364/josab.24.001756.
Eckstein JN, Ferguson AI, Hänsch TW. High-resolution two-photon spectroscopy with picosecond light pulses. Phys. Rev. Lett. 1978; 40(13): 847–850. https://doi.org/10.1103/PhysRevLett.40.847.
Marian A, Stowe MC, Lawall JR, Felinto D, Ye J. United time-frequency spectroscopy for dynamics and global structure. Science. 2004; 306(5704): 2063–2068. https://doi.org/10.1126/science.1105.
Cingöz A, Yost DC, Allison TK, Ruehl A, Fermann ME, Hartl I, et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature. 2012; 482(7383): 68–71. https://doi.org/10.1038/nature10711.
Yost DC, Matveev A, Grinin A, Peters E, Maisenbacher L, Beyer A, et al. Spectroscopy of the hydrogen 1S-3S transition with chirped laser pulses. Phys. Rev. A. 2016; 93(4): article ID 042509. https://doi.org/10.1103/PhysRevA.93.042509.
Solaro C, Meyer S, Fisher K, DePalatis MV, DrewsenM. Direct frequency-comb-driven Raman transitions in the terahertz range. Phys. Rev. Lett. 2018; 120(25): article ID 253601. https://doi.org/10.1103/PhysRevLett.120.253601.
Barmes I, Witte S, Eikema KSE. Spatial and spectral coherent control with frequency combs. Nat. Photonics. 2012; 7(1): 38–42. https://doi.org/10.1038/nphoton.2012.299.
Porat G, Heyl CM, Schoun SB, Benko C, Dörre N, Corwin KL, et al. Phase-matched extreme-ultraviolet frequency-comb generation. Nat. Photonics. 2018; 12(7): 387–391. https://doi.org/10.1038/s41566-018-0199-z.
Mandon J, Guelachvili G, Picqué N, Druon F, Georges P. Femtosecond laser Fourier transform absorption spectroscopy. Opt. Lett. 2007; 32(12): 1677–1679. https://doi.org/10.1364/ol.32.001677.
Giaccari P, Deschênes J-D, Saucier P, Saucier P, Genest J, Tremblay P. Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method. Opt. Lett. 2008; 16(6): 4347–4365. https://doi.org/10.1364/oe.16.004347.
Griffiths P, Hasten JA. Fourier Transform Infrared Spectrometry. 2nd ed. Hoboken, NJ, USA: John Wiley & Sons; 2007. https://doi.org/10.1002/9780470106310.ch9.
Coddington I, Newbury N, Swann W. Dual-comb spectroscopy. Optica. 2016; 3(4): 414–426. https://doi.org/10.1364/optica.3.000414.
Coddington I, Swann WC, Newbury NR. Coherent dual-comb spectroscopy at high signal-to-noise ratio. Phys. Rev. A. 2010; 82(4): article ID 043817. https://doi.org/10.1103/physreva.82.043817.
Ideguchi T, Poisson A, Guelachvili G, Picqué N, Hänsch TW. Adaptive real-time dual-comb spectroscopy. Nat. Commun. 2014; 5: article ID 4375. https://doi.org/10.1038/ncomms4375.
Rieker GB, Giorgetta FR, Swann WC, Kofler J, Zolot AM, Sinclair LC, et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica. 2014; 1(5): 290–298. https://doi.org/10.1364/optica.1.000290.