Спецвыпуск 3.2022

Научный отчет

УДК 550.832.75:622.245.1
(UDK 550.832.75:622.245.1)

Для получения доступа к статьям

Авторизуйтесь

НОВЫЕ ТЕХНОЛОГИИ И ОБОРУДОВАНИЕ (NEW TECHNOLOGIES AND EQUIPMENT)

МАГНИТОИМПУЛЬСНОЕ РАДИАЛЬНОЕ ЗОНДИРОВАНИЕ И АЗИМУТАЛЬНОЕ СКАНИРОВАНИЕ ОБСАДНЫХ И НАСОСНО-КОМПРЕССОРНЫХ ТРУБ МНОГОКОЛОННЫХ СКВАЖИН

(MAGNETIC PULSE FLAW-DETECTION RADIAL PROBING AND AZIMUTHAL SCANNING OF CASING AND TUBING IN MULTISTRING WELLS)

В статье предлагается краткий обзор современного состояния электромагнитной дефектоскопии – толщинометрии обсадных колонн и насосно-компрессорных труб в многоколонных скважинах. В частности, отмечается, что в АО НПП «ВНИИГИС» и АО НПФ «ГИТАС» разработана аппаратура МИД-4, позволяющая проводить оценку технического состояния четырех колонн. В 2021 г. по заданию ПАО «Газпром» в АО НПФ «ГИТАС» были завершены работы по созданию аппаратуры МИД-СМ5. В статье рассматривается опыт ее использования при исследовании многоколонных скважин. По результатам измерений на физических моделях, имитирующих различные дефекты в третьей, четвертой и пятой колоннах, дана оценка чувствительности созданной аппаратуры. Показана возможность радиального зондирования и азимутального сканирования в трубах большого диаметра (до 610 мм), являющихся внешними колоннами для трех-, четырех- и пятиколонных моделей.
Для интерпретации результатов измерений в многоколонных скважинах авторами разработана система DeViz-SM5, которая включает алгоритм определения толщины колонн на основе математического моделирования и итерационного поиска решений. В целях оценки работоспособности системы и погрешности вычисления толщины стенок проведены измерения в аттестованных моделях многоколонных (от трех до пяти) скважин. Показано, что максимальная абсолютная погрешность для пятиколонной модели не превышает 1,4 мм при суммарной толщине стенок 43 мм.
Технология электромагнитной дефектоскопии на основе метода переходных процессов использовалась для исследования многоколонных скважин на Ближнем Востоке и в России. Приведены результаты оценки технического состояния скважин. Показана возможность выявления нарушений целостности колонн в приустьевой части.

The article briefly overviews the current state of electromagnetic flaw detection and thickness gauging of casing and tubing in multistring wells. It is specifically noted that AO NPP VNIIGIS ( joint-stock company scientific production enterprise) and Scientific and Production Firm JSC GITAS have developed an instrument named MID-4 that allows for technical evaluation of four strings. In 2021, GITAS completed the development of the MID-SM5 instrument on the assignment of PJSC Gazprom. The article considers its application experience in multistring well surveying. The instrument’s sensitivity is evaluated based on the measurement results obtained on physical models simulating various flaws in the third, fourth, and fifth strings. Radial probing and azimuthal scanning are shown to be possible in large-diameter pipes (up to 610 mm) serving as the outer casing for three-, four-, and five-string models.
To interpret the measurement results for the multistring wells, we developed the DeViz-SM5 system, which includes a string thickness determination algorithm based on mathematical modeling and an iterative solver. Measurements were made in certified three- to five-string well models to evaluate the system operability and wall thickness calculation error. It is shown that the maximum absolute error for the five-string model does not exceed 1.4 mm at a total wall thickness of 43 mm.
Transient electromagnetic flaw detection technology has been used for multistring well surveys in Russia and the Middle East. The paper provides some technical evaluation results for wells. It also shows the possibility to detect string integrity faults in the wellhead area.

МНОГОКОЛОННАЯ СКВАЖИНА, МЕТОД ПЕРЕХОДНЫХ ПРОЦЕССОВ, ОБСАДНАЯ КОЛОННА, КРИВАЯ СПАДА, ТЕХНИЧЕСКОЕ СОСТОЯНИЕ, ТЕХНОЛОГИЯ ТОЛЩИНОМЕТРИИ

MULTISTRING WELL, TRANSIENT ELECTROMAGNETIC METHOD, CASING, DECAY CURVE, TECHNICAL STATE, THICKNESS GAUGING TECHNOLOGY

А.П. Потапов, к.т.н., АО НПП «Научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин» (Октябрьский, Россия), potapov-57@bk.ru
В.Н. Даниленко, к.т.н., АО НПФ «Геофизические исследования, технологии, аппаратура, сервис» (Октябрьский, Россия), danilenko@gitas.ru
В.В. Даниленко, к.т.н., АО НПП «Научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин», vl.danilenko@gitas.ru
Г.И. Головацкая, АО НПП «Научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин», gulgran@yandex.ru
Р.Р. Куйбышев, АО НПП «Научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин», rus-422@mail.ru
А.А. Исаева, АО НПП «Научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин», phashutdinova@mail.ru
В.И. Шамшин, к.т.н., ПАО «Газпром» (Санкт-Петербург, Россия), V.shamshin@adm.gazprom.ru

A.P. Potapov, PhD in Engineering, JSC Production Enterprise Research and Design Institute of Well Logging (Oktyabrsky, Russia), potapov-57@bk.ru
V.N. Danilenko, PhD in Engineering, Scientific and Production Firm JSC Geophysical Research, Design, and Production of Well Logging Equipment, Services in Well Logging (Oktyabrsky, Russia), danilenko@gitas.ru
V.V. Danilenko, PhD in Engineering, JSC Production Enterprise Research and Design Institute of Well Logging, vl.danilenko@gitas.ru
G.I. Golovatskaya, JSC Production Enterprise Research and Design Institute of Well Logging, gulgran@yandex.ru
R.R. Kuybyshev, JSC Production Enterprise Research and Design Institute of Well Logging, rus-422@mail.ru
A.A. Isaeva, JSC Production Enterprise Research and Design Institute of Well Logging, phashutdinova@mail.ru
V.I. Shamshin, PhD in Engineering, PJSC Gazprom (Saint Petersburg, Russia), V.shamshin@adm.gazprom.ru

Потапов А.П., Даниленко В.Н., Даниленко В.В. и др. Новая технология толщинометрии многоколонных скважин на основе метода переходных процессов // Каротажник. 2021. № 4 (310). С. 76–89.

Потапов А.П., Головацкая Г.И., Даниленко В.В. и др. Оценка дефектов и толщины труб большого диаметра в многоколонных скважинах методом магнитоимпульсной дефектоскопии // Газовая промышленность. 2020. № 2 (796). С. 22–30.

Потапов А.П., Умедбаев В.Г. Новые возможности магнитоимпульсной дефектоскопии // Газовая промышленность. 2017. № 11 (760). С. 114–119.

Патент № 2636064 Российская Федерация, МПК E21B 47/00 (2012.01), G01N 27/82 (2006.01), G01B 7/16 (2006.01). Способ электромагнитной дефектоскопии в многоколонных скважинах: № 2016128899: заявл. 14.07.2016: опубл. 20.11.2017 / Потапов А.П. // Yandex.ru: патенты. URL: https://yandex.ru/patents/doc/RU2636064C1_20171120 (дата обращения: 20.08.2022).

Dutta S., Olaiy J. Analysis and interpretation of multi-barrier transient electromagnetic measurements // Transactions of the SPWLA 61st Annual Logging Symposium. Virtual Online Webinar, 2020. DOI: 10.30632/SPWLA-5008.

Martin L.S., Fouda A., Amineh R., et al. New high-definition frequency tool for tubing and multiple casing corrosion detection // Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference. Abu Dhabi: SPE, 2017. Article ID SPE-188932-MS. DOI: 10.2118/188932-MS.

Yu Y., Redfield W., Boggs N., et al. An advanced technique for simultaneous in situ inspection of multiple metallic tubulars // Proceedings of the SPE/ICoTA Well Intervention Conference and Exhibition. The Woodlands, TX, USA: SPE, 2019. Article ID SPE-194269-MS. DOI: 10.2118/194269-MS.

Potapov AP, Danilenko VN, Danilenko VV, Golovatskaya GI, Kuybyshev RR, Shamshin VI. A new casing string thickness measurement technology for multistring wells based on the transient electromagnetic technique. Well Logger [Karotazhnik]. 2021; 310(4): 76–89. (In Russian)

Potapov AP, Danilenko VN, Danilenko VV, Golovatskaya GI, Kuybyshev RR. Defect and wall thickness assessment by magnetic pulse flaw detection in large diameter pipes of multistring wells. Gas Industry [Gazovaya promyshlennost’]. 2020; 796(2): 22–30. (In Russian)

Potapov AP, Umedbaev VG. New opportunities for magnetic pulse non-destructive testing. Gas Industry. 2017; 760(11): 114–119. (In Russian)

Potapov AP. Method of electromagnetic defectoscopy-thickness measurement in multi-column wells. RU2636064 (Patent) 2016.

Dutta S, Olaiya J. Analysis and interpretation of multi-barrier transient electromagnetic measurement. In: SPWLA Proceedings of the 61st Annual Logging Symposium, 24–29 July 2020, Virtual Online Webinar. 2020. https://doi.org/10.30632/SPWLA-5008.

Martin LE, Fouda AE, Amineh RK, Capoglullker R, Donderici B, Roy SS, et al. New high-definition frequency tool for tubing and multi pipe casing corrosion detection. In: SPE Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, 13–16 November 2017, Abu Dhabi, UAE. SPE; 2017. https://doi.org/10.2118/188932-MS.

Yu Y, Redfield W, Boggs N, Qin K, Rourke M, Olson J, et al. An advanced technique for simultaneous in situ inspection of multiple metallic tubulars. In: SPE/ICoTA Proceedings of the Well Intervention Conference and Exhibition, 26–27 March 2019, The Woodlands, TX, USA. SPE; 2019. https://doi.org/10.2118/194269-MS.

NEFTEGAS.info

Внимание к деталям — от идеи
до воплощения! Только актуальная информация и свежие новости.

Контакты

108811, г. Москва, Киевское ш.,
Бизнес-парк «Румянцево», корп. Б,
подъезд 5, офис 506 Б

+7 (495) 240-54-57