Olneva TV. Seismic Facies Analysis. Images of Geological Processes and Phenomena in Seismic Images. Izhevsk, Russia: Institute of Computer Research [Institut komp’yuternykh issledovaniy]; 2017. (In Russian)
Zhao T. Seismic facies classification using different deep convolutional neural networks. In: SEG Technical Program Expanded Abstracts, 22–25 September 2018, Keystone, CO, USA. Houston, TX, USA: SEG; 2018. article ID SEG-2018-2997085. https://doi.org/10.1190/segam2018-2997085.1.
Chen L, Li S, Bai Q, Yang J, Jiang S, Miao Y. Review of image classification algorithms based on convolutional neural networks. Remote Sens. 2021; 13(22): article ID 4712. https://doi.org/10.3390/rs13224712.
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Available from: https://arxiv.org/abs/1409.1556 [Accessed: 23 March 2024].
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: IEEE Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27–30 June 2016, Las Vegas, NV, USA. New York, NY, USA: IEEE; 2016. p. 770–778. https://doi.org/10.1109/CVPR.2016.90.
Tan M, Le QV. EfficientNet: Rethinking model scaling for convolutional neural networks. Proceedings of Machine Learning Research. 2019; 97: 6105–6114.
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An imperative style, high-performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer A, d'Alché-Buc F, Fox E, Garnett R (eds.) Advances in neural information processing systems. Vol. 32. Marietta, GA, USA: Curran Associates; 2019. p. 8024–8035.
Kingma DP, Ba J. Adam: A method for stochastic optimization. Available from: https://arxiv.org/abs/1412.6980 [Accessed: 23 March 2024].
Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Proceedings of Machine Learning Research. 2015; 37: 448–456.
Dramsch JS, Lüthje, Mikael. Deep-learning seismic facies on state-of-the-art CNN architectures. In: SEG Technical Program Expanded Abstracts, 22–25 September 2018, Keystone, CO, USA. Houston, TX, USA: SEG; 2018. article ID SEG-2018-2996783. https://doi.org/10.1190/segam2018-2996783.1.
Alaudah Y, Michałowicz P, Alfarraj M, AlRegib G. A machine-learning benchmark for facies classification. Interpretation. 2019; 7(3): SE175–SE187. https://doi.org/10.1190/INT-2018-0249.1.
NVIDIA Corporation. ResNet v1.5 for PyTorch. Available from: https://catalog.ngc.nvidia.com/orgs/nvidia/resources/resnet_50_v1_5_for_pytorch/performance [Accessed: 23 March 2024].