Газовая Промышленность 11.2022

Краткое сообщение

УДК 622.245.422.4
(UDK 622.245.422.4)

Для получения доступа к статьям

Авторизуйтесь

БУРЕНИЕ И СТРОИТЕЛЬСТВО СКВАЖИН (DRILLING AND WELL CONSTRUCTION)

ВЛИЯНИЕ ВОЛНОВОГО ВОЗДЕЙСТВИЯ НА ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПЛАСТИФИЦИРУЮЩИХ ДОБАВОК ДЛЯ ТАМПОНАЖНЫХ РАСТВОРОВ ПРИ ИСПОЛЬЗОВАНИИ РОТОРНО-ИМПУЛЬСНОГО АППАРАТА

(EFFECT OF WAVE ACTION ON IMPROVING EFFICIENCY OF PLASTICISING AGENTS FOR CEMENTING SLURRIES USING ROTARY PULSE APPARATUS)

Использование роторно-импульсных аппаратов для механоактивации жидких сред на стадии приготовления тампонажных растворов – актуальное направление при исследовании вопросов повышения эффективности и качества цементирования нефтегазовых скважин. В работе проанализировано влияние механоактивации комплексной многофункциональной добавки на физико-механические свойства цементного тампонажного раствора, увеличение прочностных характеристик цементного камня и долговечности эксплуатации нефтегазовых скважин. Преимущества и целесообразность применения данного метода при приготовлении растворов очевидны и основываются на фундаментальных теоретических исследованиях и результатах практического использования. Однако в настоящее время волновое воздействие на жидкие среды в целях повышения их физико-механических и поверхностно-активных свойств внедряется не так широко. Проведенные исследования позволили получить результаты, раскрывающие возможности применения механоактивированных сред в технологии приготовления тампонажных растворов и при последующем тампонировании нефтегазовых скважин. Впервые предложен способ предварительной механоактивации комплексной многофункциональной добавки для повышения ее пластифицирующих и поверхностно-активных свойств, обеспечивающих максимальную степень гидратации частиц цемента.
Целью исследования стало определение оптимальных параметров механоактивации жидкой добавки СМОДК-М при различных частотах вращения ротора и времени волнового воздействия. Представленные результаты имеют научную новизну и практическую значимость. Это подтверждается тем, что за счет применения волнового воздействия в процессе механоактивации добавки удалось достичь высокой степени пластификации тампонажного раствора, увеличить время гидратации цемента и, как следствие, прочность цементного камня на 33–42 % по сравнению с контрольным образцом. Оптимальные характеристики тампонажного раствора по плотности, водоотделению и растекаемости наблюдаются в диапазоне частот вращения ротора роторно-импульсного аппарата от 3600 до 4000 об / мин при концентрации добавки 0,3–0,4 масс. %.

Use of rotary pulse apparatus for mechanical activation of liquid media during preparation of cementing slurries is an important area of research aimed at increasing efficiency and quality of petroleum well plugging. The paper reviews the effect of mechanical activation of multipurpose compound additive on cementing slurries’ properties, increase of set cement strength, and life cycle of petroleum wells.
The advantages and feasibility of this method for preparing the cementing slurries are obvious and are based on fundamental theoretical investigations and evidence resulting from practical application. However, nowadays, exposure of liquid media to wave action is not widely implemented to improve their physical and mechanical properties and surface activity. Based on the results of the research, we have found solutions on how to use mechanically activated media for preparation of cementing slurries and subsequent plugging of petroleum wells. It is proposed the method of preliminary mechanical activation of multipurpose compound additive to increase its plasticising properties and surface activity while ensuring the highest hydration of cement particles.
The study was aimed at determining optimal parameters for mechanical activation of SMODK-M liquid additive at different rotor speeds and wave exposure times. These findings have scientific novelty and practical relevance. This is confirmed by the fact that exposure to wave action during mechanical activation of the additive resulted in higher plasticisation of cementing slurries, increased time of cement hydration and, consequently, 33–42 % increase in set cement strength as compared to the reference sample. The optimal characteristics of cementing slurry in terms of density, water separation, and spread rate were observed within 3600 to 4000 rpm range of rotary pulse apparatus speed at 0.3–0.4 wt. % content of the additive.

ВОЛНОВОЕ ВОЗДЕЙСТВИЕ, ГАЗОВАЯ СКВАЖИНА, ГИДРАТАЦИЯ, НЕФТЯНАЯ СКВАЖИНА, ОЛИГОМЕР Е-КАПРОЛОКТАМА, ПЛАСТИФИЦИРУЮЩАЯ ДОБАВКА, РОТОРНО-ИМПУЛЬСНЫЙ АППАРАТ, ЦЕМЕНТ

WAVE ACTION, GAS WELL, HYDRATION, OIL WELL, E-CAPROLACTAM OLIGOMER, PLASTICISING AGENT, ROTARY PULSE APPARATUS, CEMENT

И.В. Поляков, ФГБУН Институт машиноведения им. А.А. Благонравова Российской академии наук (Москва, Россия), polyakovigor009@gmail.ru

I.V. Polyakov, Mechanical Engineering Research Institute of the Russian Academy of Sciences (Moscow, Russia), polyakovigor009@gmail.ru

Акулова М.В., Стрельников А.Н., Слизнева Т.Е. и др. Механоимпульсная активация жидкофазных функциональных добавок в цементы и бетоны // Актуальные проблемы современного строительства, энергосберегающие технологии: материалы Междунар. науч.-практ. конф. Пенза: ПГУАС, 2011. С. 5–8.

Ганиев Р.Ф., Украинский Л.Е., Андреев В.Е., Котенев Ю.А. Проблемы и перспективы волновой технологии многофазных систем в нефтяной и газовой промышленности / под ред. Р.Ф. Ганиева. СПб.: Недра, 2008. 185 с.

Шмитько Е.И., Крылова А.В., Шаталова В.В. Химия цемента и вяжущих веществ. СПб.: Проспект науки, 2006. 205 с.

Патент № 2581830 Российская Федерация, МПК C07C 67/20 (2006.01). Способ получения поверхностно-активного вещества: № 2015107141/04: заявл. 02.03.2015: опубл. 20.04.2016 / Щепочкина Ю.А., Поляков В.С., Акулова М.В., Поляков И.В. // Yandex.ru: патенты. URL: https://yandex.ru/patents/doc/RU2581830C1_20160420 (дата обращения: 28.10.2022).

Зварыгин В.И. Тампонажные смеси. Красноярск: Сибирский федер. ун-т, 2014. 216 с.

Федюк Р.С. Проектирование цементных композитов повышенной непроницаемости // Вестник МГСУ. 2016. № 5. С. 72–81.

Орешкин Д.В. Исследование образования структуры в цементном тампонажном камне // Строительство нефтяных и газовых скважин на суше и на море. 2012. № 12. С. 41–43.

Баранников М.В., Поляков И.В., Поляков В.С. Комплексные добавки для бетонов и строительных смесей на основе органических и неорганических азотсодержащих веществ // ALITinform: Цемент. Бетон. Сухие смеси. 2021. № 1 (62). С. 30–37.

Shestakov S. Study the possibility of non-parametric amplification multibubble cavitation // Appl. Phys. (Berlin). 2008. Vol. 6. P. 18–24.

Ганиев Р.Ф., Украинский Л.Е. Нелинейная волновая механика и технология. М.: R&C Dynamics, 2008. 711 с.

ГОСТ 31108–2003. Цементы общестроительные. Технические условия // Кодекс: электрон. фонд правовых и норматив.-техн. док. URL: https://docs.cntd.ru/document/1200035243 (дата обращения: 28.10.2022).

ГОСТ 2874–82. Вода питьевая. Гигиенические требования и контроль за качеством // Охрана труда в России: информ. портал. URL: https://ohranatruda.ru/upload/iblock/93a/4294848348.pdf (дата обращения: 28.10.2022).

ГОСТ 310.4–81. Цементы. Методы определения предела прочности при изгибе и сжатии // Кодекс: электрон. фонд правовых и норматив.-техн. док. URL: https://docs.cntd.ru/document/871001227 (дата обращения: 28.10.2022).

ГОСТ 12730.3–2020. Бетоны. Метод определения водопоглощения // Кодекс: электрон. фонд правовых и норматив.-техн. док. URL: https://docs.cntd.ru/document/1200177301 (дата обращения: 28.10.2022).

ГОСТ 26798.1–96. Цементы тампонажные. Методы испытаний // Кодекс: электрон. фонд правовых и норматив.-техн. док. URL: https://docs.cntd.ru/document/1200001263 (дата обращения: 28.10.2022).

Ганиев Р.Ф., Кобаско Н.И., Кулик В.В., Лакиза В.Д. Колебательные явления в многофазных средах и их использование в технологии / под ред. Р.Ф. Ганиева. Киев: Техніка, 1980. 142 с.

Балабышко A.M., Зимин А.И., Ружицкий В.П. Гидромеханическое диспергирование / отв. ред. A.M. Кутепов. М.: Наука, 1998. 330 с.

Воробьев Ю.В. Основы теории механоактивации жидких сред // Вестник Тамбовского государственного технического университета. 2013. Т. 19, № 3. С. 608–613.

Akulova MV, Strelnikov AN, Slizneva TE, Padokhin VA, Bazanov AV. Mechanical-pulse activation of liquid-phase functional additives for cements and concretes. In: Penza State University of Architecture and Construction Advanced topics in construction and energy saving technologies: Proceedings of the International Scientific and Practical Conference, 1–2 December 2011, Penza, Russia. Penza, Russia: Penza State University of Architecture and Construction; 2011. p. 5–8. (In Russian)

Ganiev RF (ed.), Ukrainskiy LYe, Andreev VYe, Kotenev YuA. Problems and Prospects of Multi-Phase System Wave Technology in the Oil and Gas Industries. Saint Petersburg: Subsoil [Nedra]; 2008. (In Russian)

Shmitko YeI, Krylova AV, Shatalova VV. Chemistry of Cements. Saint Petersburg: Science Avenue [Prospekt Nauki]; 2006. (In Russian)

Shchepochkina JuA, Poljakov VS, Akulova MV, Poljakov IV. Method of producing surface-active substance. RU2581830 (Patent) 2016.

Zvarygin VI. Cementing Mixtures. Krasnoyarsk, Russia: Siberian Federal University; 2014. (In Russian)

Fedyuk RS. Design of cement composites with increased impermeability. Vestnik MGSU. 2016; (5): 72–81. (In Russian)

Oreshkin DV. Research of structure formation in tamping cement stone. Construction of Oil and Gas Wells on-Land and off-Shore [Stroitel’stvo neftyanyh i gazovyh skvazhin na sushe i na more]. 2012; (12): 41–43. (In Russian)

Barannikov MV, Polyakov IV, Polyakov VS. Complex additives for concrete and mixtures based on organic and inorganic nitrogen-containing substances // ALITinform: Cement. Concrete. Dry Mixtures [ALITinform: Cement. Beton. Suhie smesi]. 2021; 62(1): 30–37. (In Russian)

Shestakov S. Study the possibility of non-parametric amplification multibubble cavitation. Appl. Phys. (Berlin). 2008; 6: 18–24.

Ganiev RF, Ukrainskiy LYe. Nonlinear Wave Mechanics and Technologies. Moscow: R&C Dynamics; 2008. (In Russian)

Euroasian Interstate Council (EASC). GOST 31108–2003 (state standard). General structural. Portland clinker cements. Specifications. Available from: https://docs.cntd.ru/document/1200035243 [Accessed: 28 October 2022]. (In Russian)

USSR State Committee of Standards. GOST 2874–82. Drinking water. Hygienic requirements and quality control. Available from: https://ohranatruda.ru/upload/iblock/93a/4294848348.pdf [Accessed: 28 October 2022]. (In Russian)

State Committee for Construction. GOST 310.4–81. Cements. Мethods of bending and compression strength determination. Available from: https://docs.cntd.ru/document/871001227 [Accessed: 28 October 2022]. (In Russian)

EASC. GOST 12730.3–2020. Concretes. Method of determination of water absorption. Available from: https://docs.cntd.ru/document/1200177301 [Accessed: 28 October 2022]. (In Russian)

EASC. GOST 26798.1–96. Well cements. Теst methods. Available from: https://docs.cntd.ru/document/1200001263 [Accessed: 28 October 2022]. (In Russian)

Ganiev RF (ed.), Kobasko NI, Kulik VV, Lakiza VD. Vibration Phenomena in Multi-Phase Media and Their Application in Technology. Kyiv: Technology [Tekhnika]; 1980. (In Russian)

Balabyshko AM, Zimin AI, Ruzhitskiy VP, Kutepov AM (ed.). Hydromechanical Dispersion. Moscow: Science [Nauka]; 1998. (In Russian)

Vorobyov YuV. Basics of the theory of mechanical activation of liquids. Transactions of the Tambov State Technical University [Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta]. 2013; 19(3): 608–613. (In Russian)

NEFTEGAS.info

Внимание к деталям — от идеи
до воплощения! Только актуальная информация и свежие новости.

Контакты

108811, г. Москва, Киевское ш.,
Бизнес-парк «Румянцево», корп. Б,
подъезд 5, офис 506 Б

+7 (495) 240-54-57