Газовая Промышленность 4.2023

Научная статья

УДК 621.51:622.691.4
(UDK 621.51:622.691.4)

Для получения доступа к статьям

Авторизуйтесь

НОВЫЕ ТЕХНОЛОГИИ И ОБОРУДОВАНИЕ (NEW TECHNOLOGIES AND EQUIPMENT)

РАЗРАБОТКА И ВНЕДРЕНИЕ ТЕХНОЛОГИИ СОХРАНЕНИЯ ГАЗА, РАНЕЕ СТРАВЛИВАЕМОГО В АТМОСФЕРУ ПРИ ПЛАНОВО-ПРОФИЛАКТИЧЕСКИХ И РЕМОНТНЫХ РАБОТАХ

(DEVELOPMENT AND IMPLEMENTATION OF A TECHNOLOGY TO RETAIN GAS PREVIOUSLY VENTED TO THE ATMOSPHERE DURING SCHEDULED MAINTENANCE AND REPAIRS)

Решение проблемы снижения негативного воздействия производственных процессов на окружающую среду и неизбежных технологических потерь газа из оборудования линейной части, а также площадных объектов магистральных газопроводов, возникающей при использовании классической технологии стравливания перед ремонтом трубопроводов, компрессорных цехов и газораспределительных станций либо остановах газоперекачивающих агрегатов, крайне актуально для отрасли. Существующие способы сохранения товарного газа отчасти обеспечивают сокращение его эксплуатационных потерь, однако имеют ряд серьезных недостатков. Ресурсосберегающие технологии, одинаково эффективные как на линейной части магистральных газопроводов, так и на компрессорных и газораспределительных станциях, характеризующиеся минимальными затратами на изготовление и не требующие затрат на обслуживание, отсутствуют.
В результате итерационных газодинамических расчетов и оптимизации проточной части с применением современных методов аналитического и численного моделирования получены геометрические параметры эжектора. На этой основе была спроектирована, а затем впервые в ПАО «Газпром» создана и внедрена уникальная технология, подтвердившая в трассовых условиях возможность сохранения до 85 % газа, ранее стравливаемого в атмосферу при планово-профилактических и ремонтных работах. Показано, что эта технология обладает рядом преимуществ за счет простоты конструкции, унификации, мобильности, низкой металлоемкости и себестоимости, а также отсутствия потребности в расходных материалах и специальных работах по обслуживанию. Долговременное практическое значение подтверждено письмом Департамента ПАО «Газпром» (О.Е. Аксютин) о включении разработки в «Реестр инновационной продукции для внедрения в ПАО «Газпром», а также программой ее широкомасштабного применения на компрессорных станциях компании, принятой Департаментом ПАО «Газпром» (В.А. Михаленко). Согласно проведенным расчетам срок окупаемости проекта не превышает трех лет. При этом показатели эффективности продолжают увеличиваться по мере дальнейшего выполнения производственных циклов на оборудовании компрессорных цехов компрессорной станции «Арская».

Negative environmental impact of production processes and unavoidable process losses of gas (from line equipment, as well as area facilities of main gas pipelines) when using the conventional technology of venting prior to repairs of pipelines, compressor shops, and gas distribution stations or shutdowns of gas compressor units, is a significant challenge for the industry. The existing methods of product gas retention partially ensure reduction of its operational losses, though they have certain serious disadvantages. There are no resource-saving technologies equally effective both for the linear part of the main gas pipelines and for compressor and gas distribution stations, characterized by minimal manufacturing costs and being maintenance-free.
The iterative gas-dynamic calculations and optimization of the flow path using up-to-date analytical and numerical simulation methods provide the geometric parameters of the ejector. On this basis, a unique technology was designed, which was then implemented for the first time in PJSC Gazprom. It proved under field conditions that up to 85 % of the gas previously vented to the atmosphere during scheduled maintenance and repairs could be retained. This technology is proven to offer numerous advantages due to its simple design, unification, mobility, low steel intensity and cost, as well as the lack of need for consumables and special maintenance. The long-term practical value of the development is confirmed by the letter of the PJSC Gazprom Department (O.E. Aksyutin) about its inclusion into the “Register of innovative products for use at Gazprom”, as well as the program of its large-scale application at the company’s compressor stations, adopted by the PJSC Gazprom Department (V.A. Mikhalenko). Calculations show that the project payback period does not exceed three years. Moreover, the efficiency continues with further production cycles on the equipment of compressor shops of the Arskaya compressor station.

ЭНЕРГОСБЕРЕЖЕНИЕ, КОМПРЕССОРНАЯ СТАНЦИЯ, ГАЗОРАСПРЕДЕЛИТЕЛЬНАЯ СТАНЦИЯ, МАГИСТРАЛЬНЫЙ ГАЗОПРОВОД, ЦЕНТРОБЕЖНЫЙ НАГНЕТАТЕЛЬ, ОТКАЧКА ГАЗА, МОДЕЛИРОВАНИЕ, ЭЖЕКТОР

ENERGY SAVING, COMPRESSOR STATION, GAS DISTRIBUTION STATION, MAIN GAS PIPELINE, CENTRIFUGAL COMPRESSOR, GAS PUMPING OUT, MODELING, EJECTOR

А.Г. Ишков, д.х.н., проф., ПАО «Газпром» (Санкт-Петербург, Россия), A.Ishkov@adm.gazprom.ru

А.Н. Бронников, ПАО «Газпром», A.N.Bronnikov@adm.gazprom.ru

М.М. Кручинин, ПАО «Газпром», M.Krutchinin@adm.gazprom.ru

Р.Р. Усманов, к.т.н., ООО «Газпром трансгаз Казань» (Казань, Россия), info@tattg.gazprom.ru

М.В. Чучкалов, д.т.н., ООО «Газпром трансгаз Казань», mv-chuchkalov@tattg.gazprom.ru

Р.Х. Саляхов, ООО «Газпром трансгаз Казань», r-salyahov@tattg.gazprom.ru

А.В. Сорвачев, ООО «Газпром ВНИИГАЗ» (Москва, Россия), tu-4@yandex.ru

Д.М. Ляпичев, к.т.н., ООО «Газпром ВНИИГАЗ», lyapichev.d@gubkin.ru

А.С. Лопатин, д.т.н., проф., ФГАОУ ВО «Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина» (Москва, Россия), lopatin@gubkin.ru

A.G. Ishkov, DSc in Chemistry, Professor, PJSC Gazprom (Saint Petersburg, Russia), A.Ishkov@adm.gazprom.ru

A.N. Bronnikov, PJSC Gazprom, A.N.Bronnikov@adm.gazprom.ru

M.M. Krutchinin, PJSC Gazprom, M.Krutchinin@adm.gazprom.ru

R.R. Usmanov, PhD in Engineering, Gazprom transgaz Kazan LLC (Kazan, Russia), info@tattg.gazprom.ru

M.V. Chuchkalov, DSc in Engineering, Gazprom transgaz Kazan LLC, mv-chuchkalov@tattg.gazprom.ru

R.Kh. Salyahov, Gazprom transgaz Kazan LLC, r-salyahov@tattg.gazprom.ru

A.V. Sorvachev, Gazprom VNIIGAZ LLC (Moscow, Russia), tu-4@yandex.ru

D.M. Lyapichev, PhD in Engineering, Gazprom VNIIGAZ LLC, lyapichev.d@gubkin.ru

A.S. Lopatin, DSc in Engineering, Professor, National University of Oil and Gas “Gubkin University” (Moscow, Russia), lopatin@gubkin.ru

Российская Федерация. Правительство. Энергетическая стратегия Российской Федерации на период до 2035 года: распоряжение Правительства Российской Федерации от 09.06.2020 № 1523-р // Правительство Российской Федерации: офиц. сайт. URL: http://government.ru/docs/all/128340/ (дата обращения: 04.04.2023).

Российская Федерация. Законы. Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации: Федер. закон от 23.11.2009 № 261-ФЗ: послед. ред. // КонсультантПлюс: сайт. URL: https://www.consultant.ru/document/cons_doc_LAW_93978/ (дата обращения: 04.04.2023). Режим доступа: для зарегистрир. пользователей.

Масштаб развития. Экологический отчет ПАО «Газпром» за 2020 год // ПАО «Газпром»: офиц. сайт. URL: https://www.gazprom.ru/f/posts/57/982072/gazprom-environmental-report-2020-ru.pdf (дата обращения: 04.04.2023).

ОНТП 51-1–85. Магистральные трубопроводы. Часть I. Газопроводы // Кодекс: электрон. фонд правовых и норматив.-техн. док. URL: https://docs.cntd.ru/document/1200003215 (дата обращения: 04.04.2023).

СНиП 2.05.06–85. Магистральные трубопроводы. М.: Госстрой, 1988. 50 c.

СП 36.13330.2012. Магистральные трубопроводы. Актуализированная редакция СНиП 2.05.06–85* // Кодекс: электрон. фонд правовых и норматив.-техн. док. URL: https://docs.cntd.ru/document/1200103173 (дата обращения: 04.04.2023).

Патент № 2362087 Российская Федерация, МПК F17D 1/00 (2006.01), F17D 1/07 (2006.01). Способ опорожнения участков трубопроводов от газа в многониточных системах магистральных газопроводов (варианты): № 2008110622/06: заявл. 19.03.2008: опубл. 20.07.2009 / Кантюков Р.А., Закиров Р.Ш., Тамеев И.М. и др.; заявитель: ООО «Газпром трансгаз Казань» и др. // Yandex.ru: патенты. URL: https://yandex.ru/patents/doc/RU2362087C1_20090720 (дата обращения: 04.04.2023).

Ишков А.Г., Яценко И.А., Афанасьев А.С. и др. Использование мобильных компрессорных станций для сохранения газа при проведении ремонтных работ на магистральных газопроводах // Газовая промышленность. 2021. № 3 (813). С. 62–65.

Усманов Р.Р., Чучкалов М.В., Сорвачев А.В., Бодров А.И. Система опорожнения оборудования компрессорных станций на основе струйного эжектора // Газовая промышленность. 2021. № 8 (820). С. 110–118.

Сорвачев А.В. Откачка и утилизация газа из технологических газопроводов компрессорных станций. Варианты исполнения оборудования, мобильный и стационарный тип // Компрессорная техника и пневматика. 2019. № 1. С. 43–46.

Усманов Р.Р., Чучкалов М.В., Сорвачев А.В. и др. Инновационная активность и научные достижения ООО «Газпром трансгаз Казань» // Газовая промышленность. 2021. № S1 (814). С. 10–17.

Соколов Е.Я., Зингер М.Н. Струйные аппараты. 3-е изд., перераб. М.: Энергоатомиздат, 1989. 350 с.

Патент № 2652473 Российская Федерация, МПК F17D 1/065 (2006.01), F04D 25/02 (2006.01). Система и способ откачки газа из компрессора газоперекачивающего агрегата: № 2017127357: заявл. 31.07.2017: опубл. 26.04.2018 / Кантюков Р.Р., Сорвачев А.В., Сагбиев И.Р.; заявитель: ООО «Газпром трансгаз Казань» // Yandex.ru: патенты. URL: https://yandex.ru/patents/doc/RU2652473C2_20180426 (дата обращения: 04.04.2023).

Патент № 2728582 Российская Федерация, МПК F04D 25/00 (2006.01). Система и способ откачки газа из компрессорного цеха компрессорной станции: № 2018123122: заявл. 25.06.2018: опубл. 31.07.2020 / Кантюков Р.Р., Сорвачев А.В., Сорвачева Ф.Г.; заявитель: ООО «Газпром трансгаз Казань» // Yandex.ru: патенты. URL: https://yandex.ru/patents/doc/RU2728582C2_20200731 (дата обращения: 04.04.2023).

Патент № 2754647 Российская Федерация, МПК F17D 1/00 (2006.01). Способ откачки газа из центробежных нагнетателей одного или нескольких газоперекачивающих агрегатов компрессорных цехов магистрального газопровода, соединенных межцеховыми перемычками и система для ее осуществления: № 2020136771: заявл. 09.11.2020: опубл. 06.09.2021 / Чучкалов М.В., Сорвачев А.В.; заявитель: ООО «Газпром трансгаз Казань» // Yandex.ru: патенты. URL: https://yandex.ru/patents/doc/RU2754647C1_20210906 (дата обращения: 04.04.2023).

Патент № 2733572 Российская Федерация, МПК F17D 1/02 (2006.01), F17D 1/065 (2006.01), F04D 25/02 (2006.01), F04F 5/54 (2006.01). Способ откачки газа из компрессоров газоперекачивающих агрегатов и система для ее осуществления: № 2019100368: заявл. 09.01.2019: опубл. 05.10.2020 / Кантюков Р.Р., Сорвачев А.В.; заявитель: ООО «Газпром трансгаз Казань» // Yandex.ru: патенты. URL: https://yandex.ru/patents/doc/RU2733572C2_20201005 (дата обращения: 04.04.2023).

Патент № 2754934 Российская Федерация, МПК F17D 1/00 (2006.01). Способ откачки газа из оборудования компрессорных цехов магистрального газопровода, соединенных межцеховыми перемычками, и система для ее осуществления: № 2020136773: заявл. 09.11.2020: опубл. 08.09.2021 / Чучкалов М.В., Сорвачев А.В.; заявитель: ООО «Газпром трансгаз Казань» // Yandex.ru: патенты. URL: https://yandex.ru/patents/doc/RU2754934C1_20210908 (дата обращения: 04.04.2023).

Абрамович Г.Н. Прикладная газовая динамика. 3-е изд., перераб. М.: Наука, 1969. 824 с.

Дейч М.Е. Техническая газодинамика. 2-е изд., перераб. М. и др.: Госэнергоиздат, 1961. 672 с.

Патент № 2460000 Российская Федерация, МПК F16L 55/07 (2006.01). Способ продувки узлов очистки газа и устройство для его осуществления: № 2010140885/06: заявл. 06.10.2010: опубл. 27.08.2012 / Пашин С.Т., Дистанов Р.Ю., Исмагилов И.Г. и др.; заявитель: ООО «Газпром трансгаз Уфа» // Yandex.ru: патенты. URL: https://yandex.ru/patents/doc/RU2460000C2_20120827 (дата обращения: 04.04.2023).

Патент № 2746172 Российская Федерация, МПК F16L 55/07 (2006.01), F17D 1/04 (2006.01). Способ безрасходной продувки узлов очистки газа: № 2020122639: заявл. 03.07.2020: опубл. 08.04.2021 / Усманов Р.Р., Чучкалов М.В., Гимранов И.Р.; заявитель: ООО «Газпром трансгаз Казань» // Yandex.ru: патенты. URL: https://yandex.ru/patents/doc/RU2746172C1_20210408 (дата обращения: 04.04.2023).

Патент № 2787080 Российская Федерация, МПК F17D 1/065 (2006.01), СПК F17D 1/065 (2022.08). Способ откачки газа из отключенного участка коридора магистральных газопроводов: № 2022104935: заявл. 24.02.2022: опубл. 28.12.2022 / Усманов Р.Р., Чучкалов М.В., Сорвачев А.В.; заявитель: ООО «Газпром трансгаз Казань» // Федеральный институт промышленной собственности: офиц. сайт. URL: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2787080&TypeFile=html (дата обращения: 04.04.2023).

The Russian Government. Order No. 1523-r dated 9 June 2020. The Energy Strategy of the Russian Federation to 2035. Available from: http://government.ru/docs/all/128340/ [Accessed: 4 April 2023]. (In Russian)

Federation Council. Federal Law No. 261-FZ dated 23 November 2009 (latest edition). On the energy saving and energy efficiency and on the amendments to certain legislative acts of the Russian Federation. Available from: https://www.consultant.ru/document/cons_doc_LAW_93978/ [Accessed: 4 April 2023]. (Accessible for registered users; in Russian)

PJSC Gazprom. Growth at scale. Gazprom environmental report 2020. Available from: https://www.gazprom.ru/f/posts/57/982072/gazpromenvironmental-report-2020-ru.pdf [Accessed: 4 April 2023]. (In Russian)

Ministry of the Gas Industry. ONTP 51-1-85 (all-union norms of technological design). Main pipelines. Part I. Gas pipelines. Available from: https://docs.cntd.ru/document/1200003215 [Accessed: 4 April 2023]. (In Russian)

Ministry of Construction of Oil and Gas Industries. SNiP 2.05.06–85 (building codes and regulations). Main pipelines. Moscow: State Committee for Construction in the Soviet Union; 1988. (In Russian)

Federal Agency for the Construction, Housing and Utilities. SP 36.13330.2012 (code of practice). Trunk pipelines. Revised edition of SNiP 2.05.06–85. Available from: https://docs.cntd.ru/document/1200103173 [Accessed: 4 April 2023]. (In Russian)

Kantjukov RA, Zakirov RSh, Tameev IM, Saitkulov VG, Khusnutdinov ShN, Kornoukhov AA, et al. Procedure of gas evacuation from sections of pipelines in multi-strand systems of gas mains (versions). RU2362087 (Patent) 2009.

Ishkov AG, Yatsenko IA, Afanasyev AS, Nazarov AA, Treskov AYu. Using mobile compressor stations to preserve gas during repairs on main gas pipelines. Gas Industry [Gazovaya promyshlennost’]. 2021; 813(3): 62–65. (In Russian)

Usmanov RR, Chuchkalov MV, Sorvachev AV, Bodrov AI. A system for emptying compressor station equipment based on a jet ejector. Gas Industry. 2021; 820(8): 110–118. (In Russian)

Sorvachev AV. Pumping and disposal of gas from process pipelines of compressor stations. Embodiments of the equipment, mobile or stationary type. Compressors and Pneumatics [Kompressornaya tehnika i pnevmatika]. 2019; (1): 43–46. (In Russian)

Usmanov RR, Chuchkalov MV, Sorvachev AV, Gimranov IR, Mansurov DE. Innovative activity and scientific achievements of Gazprom transgaz Kazan LLC. Gas Industry. 2021; 814(S1): 10–17. (In Russian)

Sokolov EYa, Zinger MN. Jet Devices. 3rd ed. Moscow: Energy Literature State Publishing [Gosenergoizdat]; 1989. (In Russian)

Kantyukov RR, Sorvachev AV, Sagbiev IR. System and method for pumping gas from compressor of gas transfer unit. RU2652473 (Patent) 2018.

Kantyukov RR, Sorvachev AV, Sorvacheva FG. System and method of gas pumping from compressor shop of compressor station. RU2728582 (Patent) 2020.

Chuchkalov MV, Sorvachev AV. Method for pumping gas from centrifugal superchargers of one or more gas pumping units of compressor shops of main gas pipeline connected by inter-shop ridges, and system for its implementation. RU2754647 (Patent) 2021.

Kantyukov RR, Sorvachev AV. Method of gas pumping from compressors of gas transfer units and system for its implementation. RU2733572 (Patent) 2020.

Chuchkalov MV, Sorvachev AV. Method for pumping gas from equipment of compressor shops of the main gas pipeline connected by inter-shop ridges, and system for its implementation. RU2754934 (Patent) 2021.

Abramovich GN. Applied Gas Dynamics. 3rd ed. Moscow: Science [Nauka]; 1969. (In Russian)

Dejch ME. Technical Gas Dynamics. 2nd ed. Moscow: Energy Literature State Publishing; 1961. (In Russian)

Pashin ST, Distanov RJu, Ismagilov IG, Chuchkalov MV, Fajzullin SM, Ivanov ES, et al. Method of gas cleaning assembly purging and device to this end. RU2460000 (Patent) 2012.

Usmanov RR, Chuchkalov MV, Gimranov IR. Method of no-waste purging of gas purification units. RU2746172 (Patent) 2021.

Usmanov RR, Chuchkalov MV, Sorvachev AV. Method of pumping gas from a disconnected section of the main gas pipeline corridor. RU2787080 (Patent) 2022.

NEFTEGAS.info

Внимание к деталям — от идеи
до воплощения! Только актуальная информация и свежие новости.

Контакты

108811, г. Москва, Киевское ш.,
Бизнес-парк «Румянцево», корп. Б,
подъезд 5, офис 506 Б

+7 (495) 240-54-57