(OPERATIVE MANAGEMENT OF PETROCHEMICAL PROCESSES IN TERMS OF TECHNICAL AND ECONOMIC EFFICIENCY)
В статье проанализированы методологические и математические основы построения автоматических и автоматизированных систем управления по технико-экономическим показателям. Анализ подходов к решению задач оперативной оптимизации показал, что для большинства технологических процессов преимуществом обладает подход, основанный на использовании процедур декомпозиции исходной оптимизационной задачи, применении индикаторов эффективности вместо технико-экономических показателей и семантических моделей для осуществления процедур оптимизации с применением индикаторов. В качестве семантических моделей могут использоваться семантические сети, системы нечетких продукционных правил, сообщества нечетких логических автоматов и другие методы искусственного интеллекта. Отмечено, что формирование индикаторов технико-экономических показателей, формализация и использование семантических моделей сопряжены с преодолением определенных трудностей, однако для сложных процессов альтернатива такому подходу отсутствует.
Возможности применения предлагаемого подхода проиллюстрированы на примере процессов висбрекинга, каталитического риформинга бензинов и процессов разделения нефтяных смесей на сложных ректификационных колоннах.
The article analyses methodological and mathematical foundations for building automated and automated control systems based on technical and economic indicators. The analysis of approaches to solving the problems of operational optimization has shown that for most technological processes the advantage is an approach based on the use of decomposition procedures of the initial optimization task, of performance indicators instead of technical and economic indicators and semantic models to implement optimization procedures using the indicators. As semantic models can be used semantic networks, systems of fuzzy production rules, communities of fuzzy logic automata and other methods of artificial intelligence. It is noted that the formation of indicators of technical and economic indicators, formalization and the use of semantic models involves overcoming certain difficulties, but for complex processes there is no alternative to this approach.
Possibilities of applying of the offered approach are illustrated on an example of processes of visbreaking, catalytic reforming of gasoline and processes of separation of oil mixes on complex rectification columns.
A.P. Verevkin1; e-mail: apverevkin@mail.ru;
T.M. Murtazin1, 2, e-mail: tm.murtazin@mail.ru;
S.V. Denisov1, 3, e-mail: s89173422202@yandex.ru;
O.V. Kiryushin1, e-mail: kir_ov@mail.ru
1 Federal state budgetary educational institution of higher education “Ufa State Petroleum Technological University” (Ufa, Russia).
2 Contour Automation Ltd (Moscow, Russia).
3 Scientific-Production Centre “Znanie” LLC (Ufa, Russia).
Catalytic Reforming (Combustion Engineering Simcom). Neft’, gaz i neftekhimiya za rubezhom [Oil, Gas and Petrochemicals Abroad]. 1989;(3):105. (In Russ.)
Blevins T., Wojsznis W.K., Nixon M. Advanced Control Foundation: Tools, Techniques and Applications. International Society of Automation; 2012.
Ansari R.M., Bawardi K.M. Multivariable Control and Advanced Monitoring: Applications to Hydrocracking Process. Saudi Aramco Journal of Technology. 2006. June. P. 33–37.
Verevkin A.P., Kiryushin O.V. Automation of Technological Processes and Productions in Oil Refining and Petrochemicals. Ufa: Publishing house of the Ufa State Petroleum Technical University; 2005. (In Russ.)
Campos M.F.M., Teixeira H.C.G., Liporace F.S., Gomes M.I. Challenges and Problems with Advanced Control and Optimization Technologies. In: Proceedings of 7th IFAC International Symposium on Advanced Control of Chemical Processes ADCHEM'09. 2009;7(1):1–8.
Murtazin T.M., Linetsky R.M., Verevkin A.P., Husniyarov M.H. Optimization of Control Technological Oil Refining Processes according to Indices of Technical and Economic Efficiency (on the Example of Tar Viscosity Breaking). Territorija “NEFTEGAS” [Oil and Gas Territory]. 2013;(5):18–22. (In Russ.)
Ostrovsky G.M., Berezhinsky T.A. Optimisation of Chemical-Technological Processes. Theory and Practice. Moscow: Khimiya [Chemistry]; 1984. (In Russ.)
Himmelblau D.M. Applied Nonlinear Programming. New York: McGraw-Hill; 1972.
Distillation Column Data Preparation and Analysis System ATPPDAQ DESKTOP: state registration certificate No. 2019616745. Authors – K.Y. Ustyuzhanin, A.P. Verevkin, T.M. Murtazin, S.V. Denisov; registration certificate holder – A.G. Lozhkin; No. 2019615770, appl. 21.05.2019; publ. 29.05.2019, Bull. No. 6. (In Russ.)
Verevkin A.P., Eltsov I.D., Zozulya Y.I., Kiryushin O.V. Adaptive Control System Development of Oil Preparation Process for Optimizing Technical and Economic Parameters. Neftegazovoye delo [Oil and Gas Business]. 2007;(1). Weblog. Available from: http://ogbus.ru/files/ogbus/eng/authors/Verevkin/Verevkin_1.pdf [Accessed 15 October 2021].
Vasiliev V.I., Ilyasov B.G. Intelligent Control Systems. Theory and Practice: textbook. Moscow: Radiotekhnika; 2009. (In Russ.)
Veryovkin А.P., Kiryushin O.V., Urazmetov Sh.F. Investigation of Connection between Dynamic Viscosity and Viscosity of Polymers on Mooney on an Example of Ethylene-Propylene Rubbers for Management of Process. Bashkirsky khimichesky zhurnal [Bashkir Chemical Journal]. 2012;19(4):16–19. (In Russ.)
Veryovkin A.P., Kalashnik D.V., Khusniyarov M.Kh. Modeling Operational Definition of the Melt Index to Manage the Process Production of Polyethylene. Bashkirsky khimichesky zhurnal [Bashkir Chemical Journal]. 2013;20(1):69–74. (In Russ.)
Verevkin A.P., Dinkel V.G. Technical Means of Automation of Chemical-Technological Processes. Ufa: Ufa Petroleum Institute; 1989. (In Russ.)
Verevkin A.P., Kiryushin O.V. The Synthesis of Complex Logical Controllers with Variables of Boolean and Fuzzy Logics. In: Proceedings of the 7th Scientific Conference on Information Technologies for Intelligent Decision Making Support (ITIDS 2019). Series: Advances in Intelligent Systems Research. 2019. P. 49–52.
Control Method of Process Mode of Oil Mixtures Separation by Fractionation Method: patent No. RU2724772C1; IPC B01D 3/42, G05D 27/00. Authors – A.P. Verevkin, T.M. Murtazin, O.V. Kiryushin, S.V. Denisov; patent holder – A.G. Lozhkin; No. 2019139390, appl. 04.12.2019; publ. 25.06.2020, Bull. No. 18. 20 p. (In Russ.)
Akhmetov S.A., Ishmiyarov M.H., Verevkin A.P. et al. Technology, Economics and Automation of Oil and Gas Processing: Textbook. Moscow: Khimiya [Chemistry]; 2005. (In Russ.)
Verevkin A.P., Kiryushin O.V., Pavlova Z.Kh. Method for Synthesis of Complex Logic Control Devices with Boolean and Fuzzy Logic Variables. Datchiki sistemy [Sensors and Systems]. 2017;12(220):10–14. (In Russ.)
Method of Catalytic Reforming Control: patent No. RU2486227C1; IPC C10G 35/24, G05D 27/00. Authors – A.P. Verevkin, T.M. Murtazin, S.V. Denisov, V.R. Nigmatullin, E.G. Teliashev, patent holder – State Unitary Enterprise “Institute of Petrochemical Processing of the Republic of Bashkortostan”; No 2012119748/04, appl. 14.05.2012; publ. 27.06.2013, Bull. No. 18. 8 p. (In Russ.)
Method of Controlling Catalytic Reforming: patent No. RU2736727C1; IPC C10G 35/24. Authors – A.P. Verevkin, T.M. Murtazin, O.V. Kiryushin, S.V. Denisov; patent holder – A.G. Lozhkin; No. 2020119326, appl. 10.06.2020; publ. 19.11.2020, Bull. No. 32. 16 p. (In Russ.)
Kravtsov A.V., Ivanchina E.D., Sharova E.S. et al. Computer Prediction of Industrial Catalysts for Reforming and Isomerization of Gasoline Fraction Hydrocarbons: Textbook. Tomsk: Publishing house of Tomsk Polytechnic University; 2011. (In Russ.)