(CALCULATING OF THE EFFICIENCY OF A PRECESSIONAL GEARBOX FOR DRIVES OF OIL AND GAS EQUIPMENT)
В статье рассматриваются существующие конструкции приводов нефтегазового оборудования. В результате анализа характеристик современных ручных приводов запорной арматуры, изготовленных на основе двухступенчатых спироидных передач, установлено, что эти приводы имеют крайне низкий коэффициент полезного действия. Показано, что значительно повысить коэффициент полезного действия позволяют различные приводы нефтегазового оборудования, разработанные на базе прогрессивных прецессирующих плоскоконических передач. Однако до настоящего времени такая методика расчета коэффициента полезного действия редукторов, содержащих плоскоконическую прецессирующую передачу, отсутствовала. В статье представлены результаты разработки методики расчета коэффициента полезного действия соосного редуктора, конструкция которого содержит две плоскоконические прецессирующие передачи с малым межосевым углом. Выполнена верификация результатов расчета на основе имеющихся экспериментальных данных испытаний прецессирующих редукторов близких конструкций. Установлено, что коэффициент полезного действия прецессирующих редукторов выше, чем у двухступенчатых спироидных редукторов с близкими передаточными числами.
The article deals with the existing designs of oil and gas equipment drives. As a result of the analysis of characteristics of modern manual shut-off valve drives, made on the basis of two-stage spiroid gears, it is established that these drives have an extremely low efficiency coefficient. It is shown that various drives of oil and gas equipment, designed on the basis of progressive precessional bevel gears, can significantly increase the efficiency factor. However, until now there has been no such methodology for calculating the efficiency of gearboxes containing bevel precessional gears. The paper presents the results of the development of a methodology for calculating the efficiency of coaxial gearboxes with two bevel precessional gears with a small shaft angle. The calculation results are verified on the basis of available experimental test data for precessional gearboxes of similar designs. It was found that the efficiency factor of precessional gearboxes is higher than that of two-stage spiroidal gearboxes with similar gear ratios.
V.N. Syzrantsev1, e-mail: syzrantsevvn@tyuiu.ru
A.A. Pazyak1, e-mail: pazjakaa@tyuiu.ru
1 Federal State Budget Educational Institution of Higher Education “Industrial University of Tyumen” (Tyumen, Russia).
Gavrilenko V.A. Toothed Gears in Mechanical Engineering. Moscow: Mashgiz; 1962. (In Russ.)
Litvin F., Yukishima K., Hayasaka K., et al. Geometry and Investigation of Klingelnberg-Type Worm Gear Drive. Journal of Mechanical Design. 2007;129:17–22.
Gurevich D.F. Calculation and Design of Pipeline Valves: Calculation of Pipeline Valves. 5th ed. Moscow: LKI Publishing House; 2008. (In Russ.)
Nabiev R.M. Electric Worm Gearbox – a Relic of the Past or an Actual Classic. Territorija “NEFTEGAS” [Oil and Gas Territory]. 2010;(6):100–102. (In Russ.)
Bohle F. Spiroid Gears. A New Development in Gears of the Skew-Axis Type. Machinery. 1955;62(2):155–161.
Nelson W.D. Spiroid Gearing. Machine Desing. 1961;(3):136–144.
Nelson W.D. Spiroid Gearing. Machine Design. 1961;(4):93–100.
Nelson W.D. Spiroid Gearing. Machine Design. 1961;(5):165–171.
Litvin F.L., Fuentes A., Zanzi C., et al. Face Gear Drive with Spur Involute Pinion: Geometry, Generation by a Worm, Stress Analysis. Computer Methods in Applied Mechanics and Engineering. 2002;191(25–26):2785–2813.
Goldfarb V.I., Trubachev E.S. Manufacturing Synthesis of Spiroid Gearing. In: Proceeding of the 11th World Congress in Mechanism and Machine Science. Tianjin, China; 2004. P. 901–905.
Goldfarb V.I., Trubachev E.S., Savelieva T.V. Unification of the Hobs in Spiroid Gears. In: VDI Berichte. Proceedings of the International Conference on Transmissions. Munich, Germany, 2005. P. 1755–1759.
Goldfarb V.I., Trubachev E.S., Glavatskikh D.V. Spiroid Gears with Small Gear Ration. Some Problems of Design and Production. In: Proceedings of International Conference on Gears. Munich, Germany, 2010. P. 429–442.
Spiroid Gearboxes for Pipeline Valves. Ed. by V.I. Goldfarb. Moscow: Veche; 2011. (In Russ.)
Goldfarb V.I., Trubachev E.S., Kuznetsov A.S., et. Slip Bearing and Lubricants in Low-Speed Heavy-Duty Spiroid Gears. Russian Engineering Research. 2015;35(8):584–588.
Trubachev E. Several Issues of Tooth Generating Process by Two-Parametric Families of Generating Lines. In: Theory and Practice of Gearing and Transmissions. 2016;34:97–116.
Saari O.E. Speed Reduction Gearing: Patent USA No. 2696125. Application No. 442553, appl. 12.07.1954, publ. 07.12.1954.
Syzrantsev V., Kotlikova V. Mathematical and Program Provision of Design of Bevel Gearing with Small Shaft Angle. In: Proceedings of the International Conference on Gearing, Transmissions, and Mechanical Systems. Nottingham Trent University, UK, 2000. P. 3–18.
Syzrantsev V.N., Denisov Ju.G., Wiebe V.P., Pazyak A.A. The Design and Production of Drives Based on Pan Precess Gear for Oil and Gas Machinery. In: Proceedings of ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Boston, USA, 2015. Vol. 10. Paper No. DETC2015-47096. P. V010T11A057.
Syzrantsev V.N., Syzrantseva K.V., Pazyak A.A. Calculating Geometric Parameters of the Semi-Rolled Straight Pan Gear // Proceedings of the 6th International Symposium on Industrial Engineering – SIE 2015. Belgrade, Serbia, 2015. P. 334–337.
Syzrantsev V., Syzrantseva K., Pazyak A., Milanovich M. Research on Geometrical Characteristics of Straight Bevel Gears with a Small Shaft Angle with a Non-Generated Gear and Generated Pinion. FME Transactions. 2017;45(4):661–669.
Syzrantsev V.N., Paziak A.A. Precessional Gear for Drives of Stop Valves of Oil and Gas Pipelines and Gear Inserts of Pumps for Extraction of Heavy Oils. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov [Proceedings of Tomsk Polytechnic University. Engineering of Georesources]. 2017;328(2):15–27. (In Russ.)
Syzrantsev V.N., Paziak A.A. Calculation of Load-Carrying Capacity of Half-Rolling Flat Bevel Gear Drives of Stop Valves. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov [Proceedings of Tomsk Polytechnic University. Engineering of Georesources]. 2017;328(3):64–74. (In Russ.)
Syzrantsev V., Pazyak A. Contact Strength Calculation of Straight Bevel Precessional Gears with Small Shaft Angle. In: Proceedings of the 5th International Conference on Industrial Engineering (ICIE 2019). 2020. P. 197–204.
Syzrantsev V., Pazyak A. Methods for Minimum Clearances Calculating in a Multiple-Teeth Contact of Straight Bevel Precessional Gears. In: Lecture Notes in Mechanical Engineering. 2022. P. 366–372.
Coaxial Reduction Gear: Patent No. 2529943 Russian Federation, IPC F16H 1/32 (2006.01), F04B 47/02 (2006.01), F04C 2/107 (2006.01). Appliction No. 2013117492/11, appl. 16.04.2013, publ. 10.10.2014. Authors – Denisov Yu.G., Syzrantsev V.N., Vibe V.P.; patent holder – Firma STEK LLC. (In Russ.)
Kudryavtsev V.N. Planetary Gears. 2nd edition, revised and supplemented. Мoscow – Leningrad: Mashinostroyeniye [Mechanical Engineering]; 1966. (In Russ.)
Beizelman R.D., Tsypkin V.V., Perel L.Y. Rolling Bearings. 6th edition, revised and supplemented. Moscow: Mashinostroyeniye [Mechanical Engineering]; 1975. (In Russ.)
Bostan I.A. Precession Gears with Multi-Pair Gearing. Ed. by S.A. Shuvalov. Kishinev: Stiintsa; 1991. (In Russ.)