УДК 622.276.054.23+621.67
(UDK 622.276.054.23+621.67)
(ANALYSIS OF PUBLICATIONS ON PUMPING MULTIPHASE MIXTURES BY ELECTRICAL SUBMERSIBLE PUMPS)
Электроприводные лопастные насосы являются оборудованием, наиболее широко применяющимся в России для механизированной добычи нефти. Для обеспечения оптимальных условий работы электроприводные лопастные насосы должны функционировать в пределах рабочей части характеристики. При этом попадание свободного газа на прием лопастного насоса препятствует повышению давления и часто приводит к выходу режима работы насоса на газожидкостной смеси за границы рабочей части характеристики. Теоретические и экспериментальные исследования показали, что присутствие свободного газа в перекачиваемой среде может привести к ухудшению рабочих характеристик электроприводных лопастных насосов. Нестабильность потока газожидкостной смеси внутри насоса, сопровождающаяся скачками давления и образованием газовых карманов или каверн, также ухудшает способность насоса повышать давление. Следовательно, важно знать, какие параметры определяют структуру газожидкостного потока внутри рабочих каналов электроприводного лопастного насоса и как ее можно смоделировать. В статье анализируются опубликованные работы, в которых были предложены к применению эмпирические и механистические модели определения допустимого свободного газосодержания в электроприводных лопастных насосах. Приведено сравнение результатов расчетов допустимого свободного газосодержания по опубликованным методикам и стендовых испытаний электроприводных лопастных насосов при работе на газожидкостной смеси.
Electrical submersible pumps are the equipment most widely used in Russia for mechanized oil production. To ensure optimum operating conditions, electrical submersible pumps must work within the operating part of the characteristic. At the same time, getting free gas at the vane pump inlet prevents pressure increase and often leads to transition of the pump operation mode to gas–liquid mixture beyond the limits of the working part of the characteristic. Theoretical and experimental studies have shown that the presence of free gas in the pumped media can lead to a deterioration in the performance of electrical submersible pumps. The instability of the gas–liquid mixture inside the pump, accompanied by pressure peaks and the formation of gas pockets or caverns, further impairs the pump's ability to build up pressure. Hence, it is important to know what parameters determine the gas–liquid flow pattern inside the working channels of an electrical submersible pump and how it can be modelled. The paper analyses published works in which empirical and mechanistic models for determining acceptable free gas content in electrical submersible pumps have been proposed for use. The results of calculations of allowable free gas content according to published methods and bench tests of electrical submersible pumps during work on gas–liquid mixture are compared.
A.V. Ivanovskiy1, e-mail: alivan95@yandex.ru
R.M. Shaykhulov1, e-mail: ruslan.shajhulov96@mail.ru
T.R. Dolov1, e-mail: dolovtemir@yandex.ru
1 Federal State Autonomous Educational Institution for Higher Education “Gubkin Russian State University of Oil and Gas (National Research University)” (Moscow, Russia).
Pavlikhina A.N. Expert Approach to Mechanized Mining. Business Journal Neftegaz.RU. 2019;4(88):92–96. (In Russ.)
Darishchev V.I., Ivanovsky V.N., Ivanovsky N.F. et al. A Set of Works on Research and Reduction of Spontaneous Separation Frequency (PS-Failures) of Downhole Pumping Units. Moscow: VNIIOENG OJSC [All-Russian Research Institute for the Organization, Management and Economics of the Oil and Gas Industry]; 2000. (In Russ.)
Wang Ban-le. A Study of the Effect of Gas on the Operation of Submersible Centrifugal Electric Pumps for Operation of Oil Wells. Dissertation for the degree of Candidate of Technical Sciences. Мoscow; 1960. (In Russ.)
Romanov V.P. Research of Character of Liquid Flow in the Channels of Impeller of Submersible Centrifugal Pump. Dissertation for the degree of Candidate of Technical Sciences. Moscow: Gubkin Institute of Petrochemical and Gas Industry; 1961. (In Russ.)
Lyapkov P.D. Influence of Gas on Operation of Submersible Centrifugal Pump EN-95-800. Neftyanoe khozyaistvo [Oil Industry]. 1958;(2):43–49. (In Russ.)
Lyapkov P.D. Influence of Gas on Operation of Submersible Centrifugal Pump Stages. Trudy VNNII [Proceedings of the All-Union Oil and Gas Research Institute]. 1959;(22):59–89. (In Russ.)
Lyapkov P.D., Dunayev V.V. Results of Testing of Pump EN-160-180 in a Well with Presence of Gas in Produced Liquid. Neftyanoe khozyaistvo [Oil Industry]. 1960;(12):48–51. (In Russ.)
Lyapkov P.D., Doroshchuk N.F., Zlatkis A.D. Test Results of Submersible Centrifugal Pump on Oil and Oil-Gas Mixtures. Tatarskaya neft’ [Tatar Oil]. 1962;(4):16–21. (In Russ.)
Stanchu I. Research of Behavior of Characteristics of the Submersible Centrifugal Pump at Work on Water-Oil Mixtures. Dissertation for the degree of Candidate of Technical Sciences. Moscow: Gubkin Moscow Institute of Petrochemical and Gas Industry; 1975. (In Russ.)
Ropalov V.A. Research of Peculiarities of Work of Submersible Centrifugal Pumps on Water-Oil-Gas Mixtures. Dissertation for the degree of Candidate of Technical Sciences. Мoscow; 1981. (In Russ.)
Dib D. Development of Recommendations for Taking into Account the Effect of Temperature and Pressure on the Foaming of Liquids with Regard to the Calculation of the Hydraulic Characteristics of a Submersible Centrifugal Pump. Dissertation for the degree of Candidate of Technical Sciences. Moscow: State Academy of Oil and Gas; 1991. (In Russ.)
Ageev Sh.R., Druzhinin E.Yu. ESP at Increased Gas Content at the Inlet. Burenie i neft’ [Drilling and Oil]. 2003;(7–8):23–25. (In Russ.)
Gilev V.G., Rabinovich A.I, Ivashov A.A., Ageev Sh.R. On the Issue of Calculation and Test Method for Pumps at Work in Gas-Liquid Mixture. Burenie i neft’ [Drilling and Oil]. 2012;(11):56–60. (In Russ.)
Gilyov V.G., Rabinovich A.I., Ageev Sh.R. Estimation Methodology of Multistage Submersible Pumps Parameters at a Single Stage. Neftepromyslovoe delo [Oilfield Engineering]. 2009;(2):36–41. (In Russ.)
Ageev Sh.R., Grigoryan E.E., Makienko G.P. Russian Vane Pump Installations for Oil Production and Their Application. Perm: Pressmaster LLC; 2007. (In Russ.)
Dolov T.R., Ivanovsky A.V., Shaykhulov R.M. Degradation of the Characteristics of Electric Submersible Pumps by a Speed Coefficient from 100 to 150 When Pumping a Gas-Liquid Mixture. Oborudovanie i tekhnologii neftegazovogo kompleksa [Equipment and Technologies for Oil and Gas Industry]. 2021;4(124):5–10. (In Russ.)
Dolov T.R., Shaykhulov R.M., Ivanovsky A.V., Slavinsky M.A. Study of the Operation of Centrifugal-Vortex Stages with Different Designs of Vortex Rims When Pumping a Gas-Liquid Mixture. Oborudovanie i tekhnologii neftegazovogo kompleksa [Equipment and Technologies for Oil and Gas Industry]. 2021;6(126):5–8. (In Russ.)
Ivanovskiy A.V. Performance Characteristics and Preferred Areas of Operation of Some Designs of Electric Submercible Pump Stages. Territorija “NEFTEGAS” [Oil and Gas Territory]. 2022;(3–4):62–69. (In Russ.)
Guidelines of Rosneft Oil Company PJSC No. P1-01.05 M-0005 “Unified Technical Requirements for ESP, SRP, Tubing and Other Oil Production Equipment”. Ver. 6.00ETT. Approved by Rosneft Order No. 248 dated 26.05.2016, put into effect 23.06.2016. Мoscow; 2016. (In Russ.)
Turpin J.L., Lea J.F., Bearden J.L. Gas-Liquid Flow through Centrifugal Pumps-Correlation of Data. In: Proceedings of the 3rd International Pump Symposium. Texas A&M University, 1986. P. 13–20.
Dunbar C.E. Determination of Proper Type of Gas Separator. Paper presented at the Microcomputer Applications in Artificial Lift Workshop. SPE Los Angeles Basin Section. Oct. 15–17, 1989.
Alhanati F.J.S., Doty D.R. A Simple Model for the Efficiency of Rotary Separators. Paper presented at the SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana, Sept. 1994.
Submersible Centrifugal Pumping Units for Oil Production: Translator – Reference Book. Moscow: Nauka i tekhnologii [Science and Technology]; 1999. (In Russ.)
Minchenko D.A., Yakimov S.B., Noskov A.B. et al. Project of Introduction of Gas Separators of Electrical Submersible Pumps with Lower Power Consumption: Preparation and Start of Implementation. Neftyanoe khozyaistvo [Oil Industry]. 2019;(11):64–67. (In Russ.)
Minchenko D.A., Yakimov S.B., Noskov A.B. et al. Project to Improve Wear Resistance of Gas Separators of Electric Submersible Pumps at Rosneft Oil Company. Neftyanoe khozyaistvo [Oil Industry]. 2020;(11):62–65. (In Russ.)
Bulat A.V., Ivanovskiy V.N., Orlova E.A. et al. Bench-Testing of Gas Separators of Electrically Driven Vane Pump Units to Develop New Specifications for Rosneft PJSC. Territorija “NEFTEGAS” [Oil and Gas Territory]. 2021;(5–6):56–62. (In Russ.)
Chisely E.A. Two Phase Flow Centrifugal Pump Performance. PhD Thesis. Pocatello: Idaho State University; 1997.
Duran J. Pressure Effects on ESP Stages Air-Water Performance. Master of Science Thesis. Tulsa: University of Tulsa; 2003.
Zapata L. Rotational Speed Effects on ESP Two-Phase Performance. Master of Science Thesis. Tulsa: University of Tulsa; 2003.
Gamboa J., Prado M. Review of Electrical-Submersible-Pump Surging Correlation and Models. SPE Production & Operations. 2011;26(4):314–324.
Pineda H., Biazussi, J., Lopez F. et al. Phase Distribution Analysis in an Electrical Submersible Pump (ESP) Inlet Handling Water–Air Two-Phase Flow Using Computational Fluid Dynamics (CFD). Journal of Petroleum Science and Engineering. 2016;139:49–61.
Cirilo R., Doty D. Gas-Liquid Flow Through Electric Submersible Pumps. In: SPE Gulf Coast Section – ESP Workshop. 1999;4:28–30.
Romero M. An Evaluation of An Electrical Submersible Pumping System for High GOR Wells. Master of Science Thesis. Tulsa: University of Tulsa;1999.
Zhou D., Sachdeva R. Simple Model of Electric Submersible Pump in Gassy Well. Journal of Petroleum Science and Engineering. 2010;70(3):204–213.
Estevam V. Uma analise fenomenologica da operaç o de bomba centrifuga com escoamento bif sico. Tese de Doutorado. Campinas: Universidade Estadual de Campinas, 2002. 265 p. (In Portugese)
Zhu J., Guo X., Liang F. et al. Experimental Study and Mechanistic Modeling of Pressure Surging in Electrical Submersible Pump. Journal of Natural Gas Science and Engineering. 2017;45:625–636.
Kuptsov S.M. Thermophysical Properties of Reservoir Fluids and Rocks of Oil Fields. Moscow: Nedra-Business Centre; 2008. (In Russ.)
Ivanovsky V.N., Degovtsov A.V., Sabirov A.A. et al. Energy Consumption and Energy Efficiency of Oil Production and Treatment. Moscow: Gubkin Russian State University of Oil and Gas (NRU); 2020. (In Russ.)
Sazonov Y.A. Development of Methodological Foundations of Pump-Ejector Units Design for Oil and Gas Industry Conditions. Speciality 05.02.13 “Machines Units and Processes (Oil and Gas Industry)”. Thesis for a PhD in technical sciences. Moscow: Gubkin Russian State University of Oil and Gas; 2010. (In Russ.)
Sazonov Y.A. Fundamentals of Calculation and Design of Pump-Ejector Units. Textbook. Moscow: Gubkin Russian State University of Oil and Gas (NRU); 2012. (In Russ.)
Dolov T.R., Shajkhulov R.M. Study of the Distribution of Pressure, Free Gas Content and Mixture Density Along the Length of an Electrically Driven Vane-Type Pumping Unit Working on a Gas-Liquid Mixture. Comparison of the Results of Numerical and Physical Experiments. Oborudovanie i tekhnologii neftegazovogo kompleksa [Equipment and Technologies for Oil and Gas Industry]. 2022;2(128):24–28. (In Russ.)