УДК 550.838+537.621.4
(UDK 550.838+537.621.4)
(FEATURES OF BUILDING A PHYSICO-MATHEMATICAL MODEL OF THE MAGNETIC FIELD OF A STEEL LONGITUDINAL PIPE)
В статье тезисно представлены результаты исследований характеристик, определяющих формирование внешнего магнитного поля стальной прямошовной трубы, таких как магнитная восприимчивость и остаточная и индуктивная намагниченность.
Отмечено, что в основу подхода к проведению исследований стальной прямошовной трубы была положена магнитная восприимчивость, определяющая общую намагниченность объекта и формирующая распределение его магнитного поля.
Изучение остаточного и индуктивного намагничивания подтвердило, что использование упрощенных моделей для расчета магнитного поля стальной трубы, являющейся трехмерным объектом, не приводит к получению полностью достоверных сведений.
По результатам проведенного анализа массива данных обоснована физико-математическая модель расчета аномального магнитного поля прямошовной стальной трубы, учитывающая остаточную и индуктивную намагниченность. При выполнении расчетов предложено поэтапно использовать аппроксимационный подход и численное интегрирование.
Представлены варианты вычисления компонент индукции аномального магнитного поля стальной прямошовной трубы или комбинации труб с различными направлениями векторов остаточного намагничивания. Моделирование поля основано на данных прямых измерений намагниченности трубы и установленных соотношениях ее остаточной и индуктивной намагниченности. Полученные результаты следует учитывать при проведении дистанционных магнитных исследований продуктопроводов и на последующих стадиях камеральных работ.
Продемонстрирована согласованность теоретического и фактически наблюдавшегося аномального магнитного поля продуктопровода из стальных прямошовных труб.
The paper presents the results of studies of characteristics determining the formation of the external magnetic field of a steel longitudinal seam tube, such as magnetic susceptibility and residual and inductive magnetization.
It is noted that the magnetic susceptibility determining the total magnetization of the object and forming the distribution of its magnetic field has been taken as the basis of the research approach for the steel longitudinal seam tube.
The study of residual and inductive magnetization has confirmed that the use of simplified models for calculating magnetic field of steel pipe, which is a three-dimensional object, does not lead to completely reliable data.
In accordance with the results of the analysis of data array, the physical and mathematical model of calculating of anomalous magnetic field of the steel tube, taking into account the residual and inductive magnetization has been substantiated. It is suggested to use approximation approach and numerical integration step by step while carrying out calculations.
The variants of calculating the components of induction of anomalous magnetic field of a steel longitudinal seam tube or a combination of tubes with different directions of residual magnetization vectors are presented. Modeling of the field is based on direct measurements of magnetization of the pipe and the determined relations between its residual and inductive magnetization. The obtained results should be taken into account during remote magnetic investigations of product pipelines and in the following stages of cameral work.
Consistency of theoretical and actually observed anomalous magnetic field of product pipeline made of steel longitudinal pipes is demonstrated.
V.S. Starikov1, e-mail: stvase@mail.ru;
V.N. Glaznev2, e-mail: glaznev@geol.vsu.ru
1 "PETER" JOINT – STOCK Co. Diving Services (Voronezh, Russia).
2 Federal State-Funded Educational Institution of Higher Education “Voronezh State University” (Voronezh, Russia).
Starikov V.S. Engineering magnetometry in investigation of technical condition of large diameter steel pipelines. Vestnik VGU. Seriya: Geologiya [Proceedings of Voronezh State University. Series: Geology]. 2016;(3):114–118. (In Russ.)
Glaznev V.N., Starikov V.S. Application of Magnetometric Survey Methods for Investigation of Underwater Pipeline Crossings of Different Lengths under Shallow Water Conditions. In: Proceedings of the 5th EAGE International Scientific and Practical Conference and Exhibition on Engineering and Mining Geophysics. April 2009. Weblog. Available from: https://www.earthdoc.org/docserver/fulltext/2214-4609/194/EngGeo09_(48).pdf?expires=1678954323&id=id&accname=guest&checksum=67E676172483338474F95FD673F58C15 [Accessed 26.02.2023]. (In Russ.)
Krapivsky E.I., Nekuchaev V.O. Remote Magnetometry of Gas and Oil Pipelines. Ukhta: Ukhta State Technical University; 2011. (In Russ.)
Lubchik A.N. Method of Remote Magnetometric Control of Trunk Pipelines Technical Condition. Zapiski Gornogo instituta [Journal of Mining Institute]. 2012;195:268–271. (In Russ.)
Huang S., Wang S. New Technologies in Electromagnetic Non-Destructive Testing. Springer – Tsinghua University Press, 2016. 233 p.
Wang M., Pang S., Jin K., et al. Construction and Experimental Verification Research of a Magnetic Detection System for Submarine Pipelines Based on a Two-Part Towed Platform. Journal of Ocean Engineering and Science. 2022;8(2):169–180.
Gershanok L.A. The Shallow Magnetometry in the Conditions of Cultural Noise. Vestnik Permskogo universiteta. Geologiya [Bulletin of Perm University. Geology]. 2013;1(18):34–49. (In Russ.)
Novikova P.N., Voroshilov V.A., Kopytin V.V., et al. Engineering Magnetic Prospecting in Detection of Underground Utilities in Conditions of Anthropogenic Interference. In: collection of scientific materials of the 18th Youth Scientific School of Geophysics. Perm: Mining Institute of the Ural Branch of RAS; 2017. Pp. 147–151. (In Russ.)
Li C., Liu D., Meng J., et al. The positioning of Buried Pipelines from Magnetic Data. Geophysics. 2020;85(6):1–77.
Sun T., Wang X., Wang J., et al. Magnetic Anomaly Detection of Adjacent Parallel Pipelines Using Deep Learning Neural Networks. Computers & Geosciences. 2021;159:104987.
Aginej R.V., Guskov S.S., Musonov V.V. The Magnetic Anomalies Modeling when Carrying Out the Pipelines Magneto-Metric Control from a Soil Surface. Truboprovodnyy transport: teoriya i praktika [Pipeline Transport: Theory and Practice]. 2013;1(35):40–44. (In Russ.)
Xinjing H., Shili C., Shixu G., et al. Magnetic Charge and Magnetic Field Distributions in Ferromagnetic Pipe. Applied Computational Electromagnetics Society Journal. 2013;28(8):737–746.
Kashkevich M.P., Komarov V.A., Movchan I.B. Geophysical Fields of Spheroidal Bodies – Textbook. Saint Petersburg: Publishing house of Saint Petersburg State University; 1998. (In Russ.)
Huang X., Zan L., Yu Z., et al. Analyses and Verifications of Magnetic Shielding of Long Pipelines Aiming for Pipeline Orientation Measurements. Journal of Magnetism and Magnetic Materials. 2021;517(3):167369.
Zhao D., Guo Z., Du J., et al. Geometric Modeling of Underground Ferromagnetic Pipelines for Magnetic Dipole Reconstruction-Based Magnetic Anomaly Detection. Petroleum. 2020;6(2):189–197.
Glaznev V.N., Starikov V.S. Remanence Magnetization and External Magnetic Field of the Direct-Seam Steel Pipes as an Object of Engineering Surveys. Vestnik VGU. Seriya: Geologiya [Proceedings of Voronezh State University. Series: Geology]. 2018;(3):83–92. (In Russ.)
Eskola L., Jokinen T.V.J., Soininen H., Tervo T. Some Remarks on Static Feld Thin Sheet Models. Journal of Applied Geophysics. 1993;30:229–234.
Zagidulin T.R. Symbolic Calculation External Magnetic Field of Continuous Steel Pipe into Permanent Uniform Magnetic Field. Kontrol’ i diagnostika [Testing. Diagnostics]. 2014;(6):15–24. (In Russ.)
Furness P. The Magnetic Fields of Steel Drums. Journal of Applied Geophysics. 2002;51(2–4):63–74.
Starikov V.S. Geophysical Works in Study of Technogenic Objects in Shallow Water Areas. In: Proceedings of the 47th session of the International Scientific Seminar “Issues of Theory and Practice of Geological Interpretation of Geophysical Fields”: collection of scientific papers. Voronezh: Publishing and printing centre “Nauchnaya kniga”; 2020. Pp. 261–265. (In Russ.)
Starikov V.S. Methods of Engineering Geophysics in Search of Anthropogenic Objects in Shallow Water Areas. Vestnik VGU. Seriya: Geologiya [Proceedings of Voronezh State University. Series: Geology]. 2021;(1):75–81. (In Russ.)
Starikov V. Using SES-2000 SBP for Exploring Shallow Waters – Recent Result. In: Materials of the 5th Workshop “Seabed Acoustics”. Germany. 2011. Pp. 33–44.