УДК [004.94+66.083]:[621.5+622.691.4+620.93]
(UDK [004.94+66.083]:[621.5+622.691.4+620.93])
(NUMERICAL SIMULATION OF THE NATURAL GAS REDUCTION PROCESS IN A PRESSURE REGULATOR BASED ON THE HARTMANN-SPRENGER EFFECT)
The solution to the problem of reducing the consumption of fuel gas during reduction in the transportation and gas distribution systems without complicating the technological schemes of reduction points can be the use of the energy separation effect of Hartmann-Sprenger. The paper proposes a variant of a quasi-isothermal pressure regulator, the principle of operation of which is based on this effect, assuming mixing of flows after energy separation. Using numerical simulations of gasdynamic processes, it is proved that the position of resonators can be determined on the basis of stationary calculations of the structure of the underexpanded jet without taking the resonator into account and, accordingly, without time-consuming calculations of the dynamics of processes. Based on the results of simulation of gas dynamics of two pairs “nozzle – resonator” installed in a single flow case, it is shown that in order to optimize the length of the regulator, the width of the passage between the two nearest resonators should be greater or equal to the sum of diameters of critical nozzle cross sections. It is also noted that the numerical vibroacoustic analysis showed that the most dangerous for the resonator is the frequency of its own oscillations. The conclusion about the necessity of additional studies in the ranges of flow rates and pressure drops close to the real ones to determine the quantitative parameters of reduction efficiency in the conditions of large gas reduction facilities is made.
A.E. Belousov1, e-mail: artembelousovevg@yandex.ru;
M.V. Dvoinikov2, e-mail: dvoinik72@gmail.com;
K.S. Kupavykh2, e-mail: kypavih@yandex.ru;
Ya. Tyan1, e-mail: yan_ukg@mail.ru;
E.S. Ovchinnikov1, e-mail: egor.owchinnikov@yandex.ru;
A.O. Shvets1, e-mail: schvetzaleksey@gmail.com;
V.S. Bushuev1, e-mail: bushuevvtly@gmail.com
1 Federal State-Funded Educational Institution of Higher Education “Saint Petersburg Mining University” (Saint Petersburg, Russia).
2 Research Center “Arktika” of the FSFEI HE “Saint Petersburg Mining University” (Saint Petersburg, Russia).
Handbook of Instructions (SP) 62.13330.2011*. Gas Distribution Systems. Enacted 01.01.2013. Weblog. Available from: https://docs.cntd.ru/document/1200084535 [Accessed 17.02.2023]. (In Russ.)
Company Standard (STO Gazprom) 2-3.5-051-2006. Norms of Technological Design of Main Gas Pipelines. Enacted 03.07.2006. Weblog. Available from: https://files.stroyinf.ru/Data1/49/49848/ [Accessed 17.02.2023]. (In Russ.)
Hartmann J. On a New Method for the Generation of Sound-Waves. Physical Review. 1922;20(6):719–727.
Sprenger H. Über thermische Effekte in Resonanzrohren. Mitteilungen aus dem Institut für Aerodynamik an der ETH Zürich. 1954;21:18.
Kawahashi M., Suzuki M. Temperature Separation Produced by a Hartmann-Sprenger Tube Coupling a Secondary Resonator. International Journal of Heat and Mass Transfer. 1981;24(12):1951–1958.
Shapiro A.H. On the Maximum Attainable Temperature in Resonance Tubes. Journal of the Aerospace Sciences. 1960;27(1):66–67.
Sibulkin M. Experimental Investigation of Energy Dissipation in a Resonance Tube. Zeitschrift für angewandte Mathematik und Physik. 1963;14:695–703.
Reynolds A.J. On Energy Separation by Aerodynamic Processes. Journal of the Aerospace Sciences. 1961;28(3):244–245.
Kadaba P.V., Bondarenko V.L., Arkharov A.M. Thermal Characteristics of a Hartmann-Sprenger Tube. International Journal of Refrigeration. 1990;13(5):309–316.
Kuptsov V.M., Ostroukhova S.I., Filippov K.N. Pressure Fluctuations and Heating of a Gas by the Inflow of a Supersonic Jet into a Cylindrical Cavity. Fluid Dynamics. 1977;12(5):728–733.
Brocher E., Ardissone J.-P. Heating Characteristics of a New Type of Hartmann-Sprenger Tube. International Journal of Heat and Fluid Flow. 1983;4(2):97–102.
USA Patent No. US3,854,401A, IPC F42c 5/00. Thermal Ignition Device. Application No. 687,397, filed 01.12.1967, publ. 17.12.1974. Inventor – E.D. Fisher.
USA Patent No. US6,966,769B2, IPC F23Q 13700. Gaseous Oxygen Resonance Igniter. Application No. 10/818,645, filed 05.04.2004, publ. 22.11.2005. Inventors – E. Joshua, C. Steven, S. Miyata, patent holder – The Boeing Company.
Aref'ev K.Yu., Voronetskii A.V., Il'Chenko M.A. Dynamic Characteristics of a Resonant Gas-Dynamic System for Ignition of a Fuel Mixture. Combustion, Explosion and Shock Waves. 2013;49(6):657–661.
Marchan R.A. Small-Scale Supersonic Combustion Chamber with a Gas-Dynamic Ignition System // Combustion Science and Technology. 2011. Vol. 183. Iss. 11. Pp. 1236–1265.
German Patent No. DE102005003310B3, IPC H02N 11/00 (2006.01), F15B 21/00 (2006.01), F25B 21/02 (2006.01), H02N 3/00 (2006.01). Pneumatic Apparatus and Method for Generating Electrical Energy. Application No. 102005003310.5, filed 25.01.2005, publ. 14.06.2006. Inventor – Zindl M. Patent holder – FESTO AG & Co. (In German)
China Patent No. CN111545559A, IPC B09C 1/06(2006.01), F27D 17/00(2006.01), F28F 1/40(2006.01), F28F 9/24(2006.01) F28F 21/08(2006.01). Device for Improving Thermal Desorption Efficiency of Base Pipe Soil Based on Hartmann Whistle Structure. Application No. 202010466819.2, filed 28.05.2020, publ. 18.08.2020. Patent holder – China Jiliang University. (In Chinese)
Brocher E., Maresca C. Drawn Plasma Flow in a Resonance Tube and Application to the MHD Shock Wave Generator. In: Proceedings of the Fifth International Conference on Magnetohydrodynamic Electrical Power Generation. Munich; 1971. Pp. 551–561. (In French)
Behera U., Paul P.J., Kasthurirengan S., et al. CFD Analysis and Experimental Investigations Towards Optimizing the Parameters of Ranque–Hilsch Vortex Tube. International Journal of Heat and Mass Transfer. 2005;48(10):1961–1973.
Eiamsa-ard S. Experimental Investigation of Energy Separation in a Counter-Flow Ranque–Hilsch Vortex Tube with Multiple Inlet Snail Entries. International Communications in Heat and Mass Transfer. 2010;37(6):637–643.
Aydln O., Baki M. An Experimental Study on the Design Parameters of a Counterflow Vortex Tube. Energy. 2006;31(14):2763–2772.
Shushin N.A. Gas Heating-Up at Throttling. Izvestiya vysshikh uchebnykh zavedeniy. Aviatsionnaya tekhnika [Proceedings of Higher Educational Institutions. Aeronautical Engineering]. 2001;(4):67–69. (In Russ.)
Da X., Qiuwei W., Bin Z., et al. Distributed Multi-Energy Operation of Coupled Electricity, Heating, and Natural Gas Networks. IEEE Transactions on Sustainable Energy. 2020;11(4):2457–2469.
Afzali Khoshkbijari B., Karimi H. Numerical Investigation on Thermo-Acoustic Effects and Flow Characteristics in Semi-Conical Hartmann–Sprenger Resonance Tube. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2016;231(14):2706–2722.
Narayanan S., Bholanath B., Sundararajan T., Srinivasan K. Acoustic Heating Effects in Hartmann Whistle. International Journal of Aeroacoustics. 2013;12(5–6):557–578.
Bauer C., Lungu P., Haidn O.J. Numerical Investigation of a Resonance Ignition System. In: 8th European Conference for Aeronautics and Space Sciences (EUCASS). 2019. Weblog. Available from: https://www.ibb.ch/publication/Igniters/EUCASS2019-0360.pdf [Accessed 18.02.2023].
Bauer C., Haidn O.J. Design and Test of a Resonance Ignition System for Green In-Orbit Propulsion Systems. In: 52nd AIAA/SAE/ASEE Joint Propulsion Conference. 25–27 July 2016, Salt Lake City (USA). Weblog. Available from: https://arc.aiaa.org/doi/10.2514/6.2016-4688 [Accessed 18.02.2023].
Kawahashi M., Sasaki S., Anzai H., Suzuki M. Unsteady, One-Dimensional Flow in Resonance Tube: with Wall Friction, Heat Transfer and Interaction on a Contact Surface). Bulletin of the JSME. 1974;17(114):1555–1563.
Rott N. The Heating Effect Connected with Non-Linear Oscillations in a Resonance Tube. Zeitschrift für angewandte Mathematik und Physik ZAMP. 1974;25:619–634.
Merkli P., Thomann H. Thermoacoustic Effects in a Resonance Tube. Journal of Fluid Mechanics. 1975;70(1):161–177.
Kawahashi M., Suzuki M. Generative Mechanism of Air Column Oscillations in a Hartmann-Sprenger Tube Excited by an Air Jet Issuing from a Convergent Nozzle. Zeitschrift für angewandte Mathematik und Physik ZAMP. 1979;30:797–810.
Hall I.M., Berry C.J. On the Heating Effect in a Resonance Tube. Journal of the Aerospace Sciences. 1959;26(4):253.
Bouch D.J., Cutler A.D. Investigation of a Hartmann-Sprenger Tube for Passive Heating of Scramjet Injectant Gases. 41st Aerospace Sciences Meeting and Exhibit. 6–9 January 2003, Reno, Nevada (USA). AIAA Paper 2003-1275.
Scavone G.P. An Acoustic Analysis of Single-Reed Woodwind Instruments with an Emphasis on Design and Performance Issues and Digital Waveguide Modeling Techniques. PhD Thesis. University of Stanford, USA, 1997.
Afzali Khoshkbijari B., Karimi H. Effect of Pipe Geometry and Material Properties on Flow Characteristics and Thermal Performance of a Conical Hartmann–Sprenger Tube. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2017;39:4489–4501.