(JUSTIFICATION OF RESERVES IN THE DEVELOPMENT AND RECONSTRUCTION OF GAS TRANSPORTATION AND DISTRIBUTION SYSTEMS)
В статье рассматриваются состояние и проблемы нормативного обеспечения проектирования газотранспортных и газораспределительных систем и их объектов. Действующие в данной области нормативы базируются на устаревших подходах, не учитывающих в полной мере перспектив развития систем газоснабжения. Новые условия функционирования газовой отрасли в частности и энергетики в целом требуют изменения парадигмы проектирования, прежде всего перехода от проектирования отдельного объекта в отрыве от системы газоснабжения к проектированию объекта как части Единой системы газоснабжения РФ. Это позволит повысить качество проектных решений за счет учета на стадии проектирования пространственно-временных взаимосвязей между существующей и проектируемой инфраструктурой, а также специфики, назначения и текущего состояния объектов системы газоснабжения в течение их жизненного цикла. В связи с этим возникает необходимость оценить подходы и критерии к проблеме избыточности, пересмотреть и нормативно закрепить критерии обеспечения надежности. В статье, в частности, приведено обоснование давно назревшего перехода от ориентации на часовой максимум расхода газа к учету в качестве базового критерия обоснованно выбранного суточного максимума потребления с нормированным уровнем избыточности.
The article deals with the state and problems of regulatory support for the design of gas transportation and gas distribution systems and their facilities. The existing standards in this area are based on outdated approaches, which do not fully take into account the prospects for the development of gas supply systems. New conditions of the gas industry operation in particular and energy industry in general require a change in the design paradigm, first of all, the transition from the design of an individual facility in isolation from the gas supply system to the design of a facility as part of the Unified Gas Supply System of Russia. This will improve the quality of design decisions by taking into account the spatial and temporal relationship between existing and projected infrastructure, as well as the specifics, purpose and current state of the objects of the gas supply system during their life cycle. In this regard, there is a need to assess approaches and criteria to the problem of redundancy, to revise and normatively fix the criteria for ensuring reliability. In particular, the article substantiates the long overdue transition from the focus on hourly maximum gas consumption to taking into account a reasonably selected daily consumption maximum with a normalized level of redundancy as the basic criterion.
M.G. Sukharev1, 2, e-mail: M.Sukharev@promgaz.gazprom.ru;
I.V. Tverskoy2, e-mail: I.Tverskoy@promgaz.gazprom.ru;
R.V. Samoylov2, e-mail: R.Samoilov@promgaz.gazprom.ru
1 Federal State Autonomous Educational Institution for Higher Education “Gubkin Russian State University of Oil and Gas (National Research University)” (Moscow, Russia).
2 Gazprom promgaz JSC (Moscow, Russia).
Company Standard (STO Gazprom) 2-3.5-051-2006. Norms of Technological Design of Main Gas Pipelines. Approved and enacted on 30.12.2005. Weblog. Available from: https://files.stroyinf.ru/Data1/49/49848/ [Accessed: 24.02.2023]. (In Russ.)
All-Union Norms of Technological Design (ONTP) 51-1-85. Trunk Gas Pipelines. Approved by Order No. 255 of the USSR Ministry of Gas Industry of 29.10.1985. URL: https://files.stroyinf.ru/Data1/11/11827/ [Accessed 24.02.2023]. (In Russ.)
Energy Strategy of the Russian Federation up to 2035. Approved by Decree of the Government of the Russian Federation of 09.06.2020 No. 1523-r. Weblog. Available from: https://minenergo.gov.ru/node/1026 [Accessed 24.02.2023]. (In Russ.)
Code of Practice for Design and Construction (SP) 42-101-2003. The General Provision and Construction Gas Distribution System from Steel and Polyethyеlene Pipes. Adopted and enacted by decision of the Interdepartmental Coordination Council for Technical Improvement of Gas Distribution Systems and Other Engineering Communications, Minutes of 08.07.2003 No. 32. Weblog. Available from: https://docs.cntd.ru/document/1200032042 [Accessed 24.02.2023]. (In Russ.)
Sukharev M.G., Akosta M.G., Lapegina A.G. On-Line Forecast of Gas Consumption by Means of Discrete Transfer Functions. Avtomatizatsiya, telemekhanizatsiya i svyaz' v neftyanoy promyshlennosti [Automation, Telemechanization and Communication in Oil Industry]. 2011;(10):42–48. (In Russ.)
Somu N., Raman M.R.G., Ramamritham K. A Hybrid Model for Building Energy Consumption Forecasting Using Long Short Term Memory Networks. Applied Energy. 2020;261:114131.
Andjelković A., Bajatović D. Integration of Weather Forecast and Artificial Intelligence for a Short-Term City-Scale Natural Gas Consumption Prediction. Journal of Cleaner Production. 2020;266:122096.
Prado F., Minutolo M.C., Kristjanpoller W. Forecasting Based on an Ensemble Autoregressive Moving Average-Adaptive Neuro-Fuzzy Inference System-Neural Network-Genetic Algorithm Framework. Energy. 2020;197:117159.
Ravnik J., Hriberšek M. A Method for Natural Gas Forecasting and Preliminary Allocation Based on Unique Standard Natural Gas Consumption Profiles. Energy. 2019;180:149–162.
Qian D., Fox P.H., See B.L. Accurate Natural Gas Load Hourly Forecasting Using ANN Model Trained with Multiple Parameters’. Presented at 46th PSIG Annual Meeting. New Orleans, LA, USA. 2015.
Gutiérrez R., Nafidi A., Gutiérrez Sánches R. Forecasting Total Natural-Gas Consumption in Spain by Using the Stochastic Gompertz Innovation Diffusion Model. Applied Energy. 2005;80(2):115–124.
Sukharev M.G., Samoilov R.V. Analysis and Management of Stationary and Non-Stationary Modes of Gas Transport. Moscow: Gubkin Russian State University of Oil and Gas (NRU); 2016. (In Russ.)
Storonsky N.M., Sukharev M.G., Samoylov R.V., et al. Current Issues of Gasification Development and Prospective Gas Demand Assessment when Updating General Schemes of Gas Supply and Gasification of the Regions. Gazovaya promyshlennost’ [Gas Industry]. 2021;10(822):88–96. (In Russ.)
Storonsky N.M., Sukharev M.G., Samoylov R.V., et al. Gas Demand Forecast as Basis Substantiating Gas Industry Development Plans. Territorija “NEFTEGAS” [Oil and Gas Territory]. 2021;(9–10):80–88. (In Russ.)
Decree of the Government of the Russian Federation of 13.09.2021 No. 1547 “On Approving the Rules for Connecting (Technological Connection) of Gas-Use Equipment and Capital Construction Facilities to Gas Distribution Networks and Declaring Invalid Some Acts of the Government of the Russian Federation” (as amended and supplemented). Weblog. Available from: https://base.garant.ru/402805164/ [Accessed 24.02.2023]. (In Russ.)
Company Standard (STO Gazprom gazoraspredelenie) 2.17-2019. Design, Construction and Operation of Gas Distribution and Gas Consumption Facilities. Methodology of Calculation of Gas Consumption by Capital Construction Facilities Using Gas as Fuel or Raw Material. Approved and enacted on 15.04.2019. Weblog. Available from: http://proekt-gaz.ru/_fr/54/_2.17-2019__.pdf [Accessed 24.02.2023]. (In Russ.)
Storonsky N.M., Sukharev M.G., Samoylov R.V., et al. The Correct Forecast of Gas Consumption is the Key to the Rational Choice of the Reserve of Production Capacities of Gas Distribution Systems. Vesti Gazovoy Nauki: collected scientific technical papers. 2022;2(51):16–28. (In Russ.)
Decree of the Government of the Russian Federation of 25.11.2016 No. 1245 “On the Procedure for Restricting Gas Destination (Supply) and Withdrawal, Amending and Repealing Certain Acts of the Government of the Russian Federation”. Weblog. Available from: http://pravo.gov.ru/proxy/ips/?docbody=&prevDoc=102158732&backlink=1&nd=102416301 [Accessed 24.02.2023]. (In Russ.)
Company Standard (STO Gazprom) 2-2.3-670-2012. Rules for Development, Approval of Master Plans, Design Documentation for Construction of Gas Distribution Systems. Moscow: Gazprom expo; 2012. (In Russ.)
Storonsky N.M., Tverskoy I.V., Sukharev M.G., Samoylov R.V. Engineering Requirements to Technological Connection. Challenges and Solutions. Territorija “NEFTEGAS” [Oil and Gas Territory]. 2022;(3–4):80–87. (In Russ.)
Debevc M. Practical Considerations when Creating and Interpreting Demand Profiles. Paper presented at the PSIG Annual Meeting. Napa Valley, California. May 2011. Paper No. PSIG-1101.
Kireev A.Yu., Gusev A.V., Kireeva A.A., Golubev V.A. Analysis of Possible Application of Artificial Intelligence when Controlling Gas Supply Systems of Gazprom PJSC. Gazovaya promyshlennost’ [Gas Industry]. 2022;2(828):116–126. (In Russ.)
Brown R., Maguda J. Peak Day Demand Uncertainty and the Need for Sensitivity Analysis. Paper presented at the PSIG Annual Meeting. Napa Valley, California. May 2011. Paper No. PSIG-1102.
Sukharev M.G., Kochueva O.N., Malinovsky K.V. Study of Gas Demand Schedules of Aggregated Consumers. Nauka i tekhnika v gazovoy promyshlennosti [Science and Technology in Gas Industry]. 2013;(3):40–50. (In Russ.)
Shakhmundes L., Whalen M. To the Methodology of Cluster Analysis In Determining Transient Flow Loading Patterns. Paper presented at the PSIG Annual Meeting. El Paso, Texas. October 1989. Paper No. PSIG-8907.